
PLU February 2023

Programming Contest

Novice Division

I. General Notes

1. Do the problems in any order you like. They do not have to be done in order from 1 to 12.

2. Problems will have either no input or will read input from a specified file. All output

should be to standard output (the monitor).

3. All input is as specified in the problem. Unless specified by the problem, integer inputs

will not have leading zeros.

4. Your program should not print extraneous output. Follow the form exactly as given in the

problem.

II. Names of Problems

Number Name

Problem 1 Terms and Conditions

Problem 2 Tetral Downstack

Problem 3 Lines Sent

Problem 4 Spices

Problem 5 Blox

Problem 6 Revenge

Problem 7 Piece Bag

Problem 8 Perfect Clear

Problem 9 T-Spin

Problem 10 Scheduling Conflict

Problem 11 Shopping

Problem 12 Metrognome

1. Terms and Conditions

Input File: none

You are a contestant in a programming contest. Today, you’re participating in an important

contest. You’ve just arrived onsite, and the contest organizers need you print the Terms and

Conditions of the contest.

Input
none

Output
Output the terms and conditions paragraph as shown below.

Example Input File
none

Example Output to Screen
Terms and Conditions of the Tournament

1. Each team member must be a Washington State student.

2. You must use the assigned team computer to solve problems.

3. Contestants may bring books and other printed materials.

2. Tetral Downstack

Input File: none

This is it. Everything you’ve ever trained for. The perfect opportunity. You’ve pressured your

opponent while maintaining a clean stack yourself. All you need to do to finish them off is one

more four-line clear, and – Oh no! You’ve dropped your I piece. Quick, draw yourself in another

I piece so you can complete your downstack and win the game!

Input
none

Output
Output the piece as shown below.

Example Input File
None

Example Output to Screen
.-----.

| |

| |

|-----|

| |

| |

|-----|

| |

| |

|-----|

| |

| |

.-----.

3. Lines Sent

Input File: lines.dat

The match is over, and you’ve won! Unfortunately, the system seems to have malfunctioned

slightly when trying to print the number of lines sent by each player. The tournament can’t

progress until this data is recorded, so you must figure out how many lines each player sent.

Luckily, you know where this data is stored in the game’s files, but you need to get it into a more

presentable format. In your case, it just means adding some words to the end of the numbers.

Input
The first line will contain a single integer n that indicates the number of players that follow.

Each data set will contain a single integer x on its own line denoting the number of lines that

were sent by each player.

Output
For each player, output "[x] lines were sent", on its own line, where [x] is the

number of lines sent.

Example Input File
6

50

45

70

35

44

60

Example Output to Screen
50 lines were sent

45 lines were sent

70 lines were sent

35 lines were sent

44 lines were sent

60 lines were sent

4. Spices

Input File: spices.dat

You have been cooking a lot, and some of your spices are very unorganized. You have decided

to create a spice storage and catalog system. You must order the spices based on how often you

use them, what color they are, how much you have, and then alphabetically.

Input
The first line will contain a single integer n that indicates the number of spices to follow.

Each of the following n lines will contain the spice name, and integer m denoting the amount of

the spice, a rating of 1-5 denoting how often they are used (5 being the most, 1 the least), and the

color of the spice.

Ordering Method
Order first by how often they are used, with 5 coming first and 1 last. Then order by color, with

the preference chart for color being (colors appear as below, same capitalization) :

1) White

2) Red

3) Brown

4) Orange

5) Blue

6) Other (not the word other, just any other color)

Then order by how much you have, with the spices you have more of coming first.

Then order by name, alphabetically.

No two input lines will have the same values for all four items.

Output
Output the spice names in order based on the above ordering method.

Example Input File
4

Paprika 7 2 Red

Cumin 12 3 Brown

Sugar 8 3 White

Salt 3 5 White

Example Output to Screen
Salt

Sugar

Cumin

Paprika

5. Blox

Input File: blox.dat

You have started a new game called Blox recently, but given that you’re too busy, you need to

write a program to play for you. Blox is a game where if you’re given blocks of certain heights,

you try to see if you can stack them such that the stack is exactly a certain height.

Input

The first line will contain a single integer n that indicates the number of data sets that follow.

Each data set will consist of a line of numbers, representing block heights, followed by a separate

line with a number denoting the target.

Output
Output "Blox be crazy" if it is possible to form the height given with the given blocks,

otherwise output "Not on my Blox".

Example Input File
3

2 3 4 5 6

7

1 2 3 4 4

12

7 7 7 7 7 7 7 7 7 7 7 7 7

8

Example Output to Screen
Blox be crazy

Blox be crazy

Not on my Blox

6. Revenge

Input File: revenge.dat

After being forced to take the punishment, you decide to get some revenge on the tournament

organizers (even though you broke the rule first) in the most juvenile way: rearranging the letters

on all the displays present. However, since you’re not very good at coming up with funny

phrases on the fly, you’ve decided to just move them systematically into an incomprehensible

phrase. Your method works as follows: reverse the string, split the string in half, then repeat the

process until each portion is only one character long. Then, combine all the portions back

together to make one big scrambled phrase. If a string is of odd length, the second half is one

character longer than the first.

Input
The first line will contain a single integer n that indicates the number of data sets that follow.

Each data set will contain a phrase on a single line that may contain spaces.

Output
For each phrase, use the splitting and reversing method to rearrange the characters in the phrase,

then output the result.

Example Input File
3

Concessions

Match Schedule

Restrooms down the hall and to the left

Example Output to Screen
issonnCosce

echledutMa Sch

dnt laal l tef oethoo mseRrsththe od wn

Explanation
For the first case, the process is as follows:

Concessions

snoissecnoC

snois secnoC

sions Conces

si ons Con ces

is sno noC sec

i s s no n oC s ec

i s s on n Co s ce

i s s o n n C o s c e

issonnCosce

7. Piece Bag

Input File: bag.dat

The classic game Tetris involves arranging falling tetrominoes on a board. There are seven

different tetrominoes, each named after a letter that resembles their shape: J, L, S, Z, I, O, and T.

In the original Tetris, the player would receive one tetromino at a time, and each tetromino

would be chosen from among the seven possibilities independently and uniformly at random.

This meant that any sequence of tetrominoes could appear in a game, such as numerous I

tetrominoes in a row. Modern versions of Tetris remove these streaks by generating tetrominoes

in groups or bags of seven: The first bag of seven tetrominoes in a game will be one of each of

the seven different tetrominoes in a random order. The next bag of seven tetrominoes will also be

one of each of the seven different tetrominoes in a random order (possibly but not necessarily

different from the ordering of the first seven). Same goes for the next bag of seven, and so on

and so forth. With this generator, it is still possible to get two of the same tetromino in a row (for

example, the seventh and eighth tetrominoes in the game can be the same as each other), but it is

not possible to get three of the same type in a row.

Given a sequence of tetrominoes, determine if the list represents a valid sequence of pieces. Note

that the last bag may contain fewer than 7 pieces.

Input
The first line will contain a single integer n that indicates the number of data sets that follow.

Each of the following n lines will contain a sequence of letters representing the possible different

shapes. These letters are I, T, O, L, J, S, and Z. The sequence will always start from the

beginning of the bag.

Output
If the sequence of pieces has no duplicates within each bag (set of 7 pieces), output "Valid

bag". Otherwise, output "Invalid bag".

Example Input File
3

SILTZJOJOLITSZZ

SILTZJOJOJITSZZ

Z

Example Output to Screen
Valid bag

Invalid bag

Valid bag

8. Perfect Clear

Input File: perfect.dat

Ah, the perfect clear. The easy yet elusive technique which captivates beginners and experts

alike. The art of the perfect clear is one that is not easily perfected. That’s why you’ve created a

bot to help tell you if it’s possible to perform a perfect clear under certain conditions! However,

you’re pretty low on funding, so you’ll only be able to create the first step in telling if a board is

perfectly clearable: the parity. Given a board, can you tell if there are an even number of squares

or an odd number? The section of the board you will be provided is always 10 squares wide but

can have any height.

Input
The first line will contain a single integer n that indicates the number of data sets that follow.

Each data set will start with a single integer x denoting the height of the board. The next x lines

will have 10 characters each, which can be either . or #, where . represents an empty square

and # represents a non-empty square.

Output
If there is an even number of non-empty squares, output "Further investigation is

needed.". If there is an odd number, output "Just give up already!".

Example Input File
2

3

#..#.#...#

.........#

######.###

3

#..#.#.#.#

.........#

######.###

Example Output to Screen
Further investigation is needed.

Just give up already!

9. T-Spin

Input File: spin.dat

Lately, you’ve been having some trouble finding potential T-Spin setups on the board. So,

you’ve decided to build yourself a training program to identify whether an area of the board has

a potential T-Spin.

The section of the board is always 10 squares wide but can have any height. A T-Spin is possible

if there are four empty squares in the shape of a T with one non-empty square blocking either the

top left or top right of the T shape (but not both). Below are diagrams of the shapes you are

looking for:

#.. ..#

... or ...

#.# #.#

where # represents a non-empty square and . an empty square. If either of these 3x3 patterns are

present on the board, a T-Spin is possible.

Input
The first line will contain a single integer n that indicates the number of data sets that follow.

Each data set will start with a single integer x denoting the height of the board. The next x lines

will have 10 characters each, which can be either . or #.

Output
For each test case, if a T-Spin is possible, output "T-Spin!!!". Otherwise, output "Missed

it...".

Example Input File
2

3

#..#.#...#

.........#

######.###

3

#..#.#.#.#

.........#

######.###

Example Output to Screen
T-Spin!!!

Missed it...

10. Scheduling Conflict

Input File: conflict.dat

With your success in the tournament, you decide to sign up in advance for the next one.

However, you first need to find out if you will be busy on the next date. For some reason, the

date of the next tournament is not displayed, but the signs instead say how many days it is until

the next tournament. Given today’s date, and the number of days until the next tournament, can

you calculate the date of the next tournament?

Input
The first line will contain a single integer n that indicates the number of data sets that follow.

Each data set will contain a date representing today in the format mm/dd/yyyy, as well as an

integer t (1 <= t <= 1500) denoting the number of days between today and the next tournament.

Output
For each test case, output the date of the next tournament in mm/dd/yyyy format.

Example Input File
3

09/01/2021 20

01/01/2021 365

12/31/2021 1

Example Output to Screen
09/21/2021

01/01/2022

01/01/2022

11. Shopping

Input File: shopping.dat

Robby Goby is low on food and needs to go shopping for the things on his grocery list. He

doesn’t know curbside pickup is a thing and is going shopping the old-fashioned way, (he is

indeed wearing a mask though). When he arrives, he realizes that the store is full and that he

needs you to see if he can get everything on his list, in a preset order, through the crowd.

Input
The first line will contain a single integer n that indicates the number of stores (data sets).

Each data set will start with its dimensions and number of list items in r,c,i format, r being

the number of rows, c being the number of columns, and i being the number of items on his list.

Each data set will have an e for the entrance/exit of the store, #’s for walls or people in your

way, .’s for open paths, and letters that represent items.

There will be a list of those letters following the maze layout. Sometimes, the letters will also

have names provided.

Output
Output "It's grocery time!" if it is possible to traverse the maze to reach everything on

the list in order or "It's not grocery time, sorry champ." if not.

Example Input File
2

12,12,3

#####e######

#..........#

#.##..#..#.#

#.j#.#..#..#

#.##.c#.#..#

#.#...#.#..#

###...#.#.##

#..#..#.#..#

#.#..#..#..#

#p..#..#..##

#.##..#..#.#

############

j-jalapenos

c-carrots

p-potatoes

5,7,4

#######

#a...##

##.#d##

#b..#l#

##e####

a

l

b

d

Example Output to Screen
It's grocery time!

It's not grocery time, sorry champ.

12. Metrognome

Input File: metrognome.dat

Let me tell you, getting garden gnomes to dance in sync while listening to Moonlight Sonata is

no easy task. The best we can hope for is that the garden gnomes eventually all line up on a

single beat or two (since all garden gnomes dance at their own pace). More specifically, each

garden gnome, G, has a certain value, Gi. At each integer multiple of Gi, (Gi, 2 * Gi, 3 * Gi,

etc.), the garden gnome G will perform a dance move. Your task is to find out, for a given set of

garden gnomes: what is the first point in time at which all the garden gnomes perform a dance

move simultaneously?

Input
The input begins with the number t (1 <= t <= 100), the number of test cases to follow. For each

of the following t test cases, a line with a single integer n (1 <= n <= 1000), the number of

garden gnomes, will appear. The next line will consist of n space-separated integers G1, G2 …

Gn (1 <= Gi <= 100).

Output
For each of the t test cases, print out a single integer: the first point in time during which all

garden gnomes are dancing simultaneously. An answer is guaranteed to exist. Do not print

trailing whitespace characters following and/or in between test cases.

Example Input File
3

5

1 2 3 4 5

2

1 2

3

7 8 3

Example Output to Screen
60

2

168

