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Deciphering the association between gene
function and spatial gene-gene interactions
in 3D human genome conformation
Renzhi Cao1 and Jianlin Cheng1,2,3*

Abstract

Background: A number of factors have been investigated in the context of gene function prediction and analysis, such
as sequence identity, gene expressions, and gene co-evolution. However, three-dimensional (3D) conformation of the
genome has not been tapped to analyse gene function, probably largely due to lack of genome conformation data until
recently.

Methods: We construct the genome-wide spatial gene-gene interaction networks for three different human B-cells or
cell lines from their chromosomal contact data generated by the Hi-C chromosome conformation capturing technique.
The G-SESAME and Fast-SemSim are used to calculate function similarity between interacted / non-interacted genes. The
Gene Ontology statistics computed from the gene-gene interaction networks is used for gene function prediction.

Results: We compare the function similarity of gene pairs that do not spatially interact and that have interactions. We
find that genes that have strong spatial interactions tend to have highly similar function in terms of biological process,
molecular function and cellular component of the Gene Ontology. And even though the level of gene-gene interactions
generally have no or weak correlation with either sequential genomic distance or sequence identity between genes, the
interacted genes with high function similarity tend to have stronger interactions, somewhat shorter genomic distance
and significantly higher sequence identity. And combining genomic distance or sequence identity with spatial gene-gene
interaction information informs gene-gene function similarity much better than using either one of them alone,
suggesting gene-gene interaction information is largely complementary with genomic distance and sequence identity
in the context of gene function analysis. We develop and evaluate a new gene function prediction method based on
gene-gene interacting networks, which can predict gene function well for a large number of human genes.

Conclusions: In this work, we demonstrate that the spatial conformation of the human genome is relevant to gene
function similarity and is useful for gene function prediction.

Background
As more and more genomes are sequenced, one urgent
and important task in computational biology is to annotate
and analyse the functions of the genes in a genome [1, 2]. A
number of factors potentially related to gene function such
as sequence identity, gene phylogenetic profiles, sequential
genomic co-localizations, gene expressions, and protein-
protein interaction have been investigated in the context of
gene function prediction and analysis [3–8]. However,

another very important aspect of a genome, i.e. three-
dimensional (3D) conformation of the genome, which
presumably plays an important role in organizing and
regulating genes, has not been tapped to analyse gene func-
tion, probably largely due to lack of genome conformation
data until recently.
Since the Hi-C technique [9] that can determine the

genome-wide chromosomal interaction/contact data was
invented in 2009, it has been applied to generate the large-
scale genome-wide chromosomal conformation data for a
number of genomes such as human B-cells [10, 11], yeast
[12], bacteria [13], and Arabidopsis [14], which provides
valuable data for studying the relationships between spatial
gene-gene interactions and gene function. Similar technique
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has also been applied to study the three-dimensional model
of budding yeast and other species [15, 16].
In this work, we analysed the intra- and inter-

chromosomal interaction (contact) data of three different
human malignant B-cell or cell lines (RL follicular lymph-
oma cell line (RL), primary tumor B-cells from an acute
lymphoblastic leukaemia patient (ALL), and MHH-CALL-4
B-acute lymphoblastic leukaemia cell line (Call4)) [10] and
one normal B-cell [9] captured by the Hi-C technique.
From the Hi-C contact data, we generated the spatial gene-
gene interactions for these cells or cell lines in order to
investigate if the spatially interacting genes tend to have
similar functions.
We compared the function similarity of spatially interact-

ing gene pairs and non-interacting gene pairs in terms of
three function categories of Gene Ontology [17]: Molecular
Function (MF), Biological Process (BP) and Cellular Com-
ponent (CC). Our analyses demonstrate that strongly inter-
acting genes tend to have very similar function, and spatial
gene-gene interaction is generally not or only weakly corre-
lated with the sequential genomic distances between genes
and with sequence identity between genes. However,
strongly interacting genes with very similar function often
have relative shorter average genomic distance and higher
average sequence identity. Combining gene-gene inter-
action with either genomic distance or sequence identity
can inform gene-gene function similarity better than either
one of them. Furthermore, we developed a gene function
prediction method based on spatial gene-gene interaction
networks constructed from the Hi-C data. The method can
rather accurately predict the function of a large number of
genes based on their interaction with other genes, indicat-
ing the gene function prediction power of spatial gene-gene
interaction information.

Results
The spatial gene-gene interaction network for whole genome
and thresholds for substantially interacting gene pairs
We construct the gene-gene interaction network of the
whole genome for the Hi-C data of three malignant B-cell/
cell lines [10] and one normal B-cell [9]. A node and edge
in the gene-gene interaction network represents the gene
and spatial interaction between genes. In order to control
the influence of the noisy chromosomal contacts in the Hi-
C data, we consider that there existed a substantially inter-
action between two genes only if the number of chromo-
somal contacts observed between the two genes in the Hi-C
data is greater than a pre-defined threshold. The interaction
between two genes is considered strong when the number
of contacts between them is greater than the pre-defined
threshold. Higher the contact number, stronger is the
interaction.
Since the number of chromosomal contacts automatically

increases with respect to the total number of Hi-C reads in

a Hi-C data, we set different thresholds on the four Hi-C
datasets in order to make the number of the substantially
interacting genes in these datasets largely the same. Actu-
ally, instead of using the number of nodes, similar threshold
can be found on the four Hi-C datasets based on the num-
ber of edges in the interaction network. Figure 1a shows
how the number of interacting genes in the spatial gene-
gene interaction networks of the four Hi-C datasets
changes with respect to the contact thresholds. The plot
shows that the number of interacting genes / nodes de-
creases fast at the beginning and eventually levels off as the
threshold increases. The decrease is most drastic on the
spatial gene-gene interaction networks of the Normal B-
Cell since the total Hi-C reads in its dataset is much smaller
than the other three data sets. Assuming the number of
interacting genes in the four interaction networks is similar,
we set different thresholds on the datasets in order to select
the same number of interacting genes in the Fig. 1a. Table 1
reports the thresholds used on each dataset in order to ob-
tain ~7000 or ~12,000 interacting genes, respectively. These
two sets of thresholds are selected because they are the only
two thresholds that can lead to the similar number of inter-
acted genes in the four cells/cell lines. About 7000 inter-
acted genes can be found in all four cells / cell lines if the
first threshold (the higher threshold) is used, and about
12,000 interacted genes are obtained if the second threshold
(the lower one) is applied. According to Fig. 1a, the number
of interacting genes changes relatively faster at around the
second threshold than at around the first threshold. So, the
first threshold leads to a more stable gene-gene interacting
network, which is used for all the analysis in this work.
Figure 1b illustrates the largest interacting gene cluster in

the spatial gene-gene interaction network for the Call4 at
the interaction threshold 16. At this threshold, 7019 genes
were found to interact, which is close to the level-off point
of the curves of the three malignant cells/cell-lines in
Fig. 1a. All the genes that are connected by at least one
path in the gene-gene interaction network are defined as a
cluster. The cluster with largest number of genes is the lar-
gest cluster shown in the figure.
Additional file 1: Figure S1 shows the total number of

nodes in the largest cluster with different interaction
threshold for four different cell lines. As we can see from
the figure, the total number of nodes in the largest cluster
decreases rapidly at beginning, which shows a lot of edges
in the network actually are formed with very few interac-
tions. It is interesting to see that the total number of nodes
in the largest cluster becomes stable with some interaction
threshold for all four cell lines. As we use interaction
threshold 12 for NORMAL-B cell, the number of nodes in
the largest cluster is around 20, and it is stable even we in-
crease the interaction threshold to 18. The 20 genes may
play an important role in NORMAL-B cell. In addition, we
use different interaction threshold for the other three cell
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lines (interaction threshold 204 for Call4, 157 for RL, 179
for ALL), so that the number of nodes in the largest cluster
is also around 20, and the largest cluster is stable. We list
these genes in Additional file 1: Table S1, the difference be-
tween the genes in NORMAL-B cell and other cell lines
may help people to better understand these diseases.

The function similarity of gene pairs that do not spatially
interact and that have substantial interactions
We compare the function similarity of gene pairs that sub-
stantially interacted (i.e., Hi-C contact number > = a prede-
fined threshold) and that did not interact in terms of Gene
Ontology (GO) function definitions. Figure 2 shows the
histogram of the function similarity of non-interacting gene
pairs and interacting gene pairs in the three GO categories
(BP, CC, MF), respectively. The interacting gene pairs were
selected from the genes that had > = 18 Hi-C contacts and
the non-interacted pairs were the ones randomly selected

that had no Hi-C contacts according to the Hi-C data of
the ALL cell. The most obvious difference in the function
distribution is that substantially more interacting genes had
almost identical function (i.e. similarity bin 10 in the figure)
than the non-interacting genes, while fewer interacting
gene pairs fell into other function similarity bins than non-
interacting gene pairs. This is the case for all three GO
function categories, even though the level of the difference
in the function similarity bin 10 is somewhat different. In
order to identify the interacting genes with highly similar
functions, we calculate the statistics of the number of
spatial interactions for the gene falling into different func-
tion similarity bins.

The statistics of the number of interactions for
substantially interacting gene pairs at each function
similarity level
Figure 3 shows the average number of observed chromo-
somal interactions for the gene pairs in each function
similarity bin in each GO function category. It is very in-
teresting to see that the average number of interactions
between genes in function similarity Bins 1–9 is rather
similar, while the average number of interactions for the
genes in Bin 10 is much higher. The average numbers of
interactions between genes in function similarity bins 9
and 10 for three function categories (BP, CC, MF) are
(62.22, 775.12), (46.54, 414.28), and (41.61, 835.80), re-
spectively. According to the Welch two-sample t-test,

Fig. 1 Visualization of gene-gene interaction network. Figure 1a is the plot of the numbers of interacted genes against interaction/contact
thresholds for four cells/cell lines respectively. X-axis denotes the interaction thresholds and Y-axis the numbers of interacted genes found at the
thresholds. Figure 1b is the visualization of the largest cluster of the gene-gene interaction network for the Call4 cell line at interaction threshold
16. The network was visualized by Cytoscape [24]

Table 1 Contact thresholds and the corresponding numbers of
interacted genes for the spatial gene-gene interaction networks
constructed for four cells/cell lines

ALL Call4 RL Normal-B

Contact threshold 7 7 5 2

Number of gene nodes 12,581 11,693 12,882 12,251

Contact threshold 18 16 12 3

Number of gene nodes 7191 7019 7119 7089
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the p-value of the difference in the average numbers of
interactions between bin 9 and bin 10 is less than 2.2e-
16 for all three categories. This indicates that the inter-
acting genes with almost identical functions are more
strongly interacted than the rest of interacting gene
pairs. In the other words, the strongly interacting genes
tend to have almost identical function. Similar pattern is
found in other cell lines, which is illustrated in Additional
file 1: Figure S2.
Since a few outliers (extremely large numbers) may

skew the average number substantially, we also calcu-
lated the quantiles of the interaction numbers in the
function similarity bins (see Additional file 1: Figure S3).
Indeed, the genes in function similarity Bin 10 have sub-
stantially more interactions than genes in the other bins.
For example, the median interaction number and the
quantile at 75 % in Bin 10 for Biological Process is 407
and 1187, which are much higher than 31.5 and 47.75 in

Bin 9. Interestingly, the genes in the other bins except
Bin 10 seem to have similar median interaction numbers
despite their different levels of function similarity.

The sequential genomic distance for substantial-ly inter-
acting gene pairs at each function similarity level
We gauge the relationship between the sequential gen-
omic distances of interacting gene pairs in function
similarities. Figure 4a, b and c illustrates the average
function similarity in each genomic location distance bin
for Biological Process, Cellular Component and Molecu-
lar Function, respectively. Gene pairs are classified into
ten bins based on their genomic location distance, and
each bin has the same number of gene pairs. The gene
pairs are substantially interacting genes (> = 18 Hi-C in-
teractions) identified in the Hi-C data of the ALL cell.
The genomic distance between two genes is the number
of base pairs between their start locations. Since it is

A B C

Fig. 2 The histograms of gene function similarities of non-interacted gene pairs and substantially interacted gene pairs. Figure 2a, b, and c represent
the histogram for Biological Process, Cellular Component, and Molecular Function respectively

A B C

Fig. 3 The average number of interactions between substantially interacted gene pairs within each functional similarity bin in three function
categories. This is for the primary tumor B-cells (ALL). Figure 3a, b, and c represent the histogram for Biological Process, Cellular Component, and
Molecular Function respectively
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difficult to define the sequential genomic distance be-
tween genes on two different chromosomes, inter-
chromosomal gene pairs were not considered in the cal-
culation. The results show that gene pairs with short
genomic distances usually have high function similarity.
For example, gene pairs in the first three bins have high
function similarity comparing with gene pairs in other
bins for all three categories. Especially for Biological
Process and Molecular Function, the function similarity
of Bin 1 (relatively in short genomic distance) is around
two times higher than the function similarity of Bin 10.
In order to reduce the influence of some genes with

extremely large genomic distance, we generated the box
plots for genomic distances in each function similarity
bin for each function category (see Additional file 1:
Figure S4). The result shows that the median genomic
distance of all gene pairs with functional similarity score
(<0.9 in Bins 1–9) is longer than the ones with very high
functional similarity score (>0.9 in Bin 10). For example,
for biological process category, the median genomic dis-
tance in Bin 1 is 574,281 bp, longer than 72,312 bp in
Bin 10; for the cellular component, the median genomic
distance in Bin 1 is 458,991 bp, longer than 201,949 bp
in Bin 10; and for the molecular function, the median
genomic distance in Bin 1 is 565,609 bp, longer than
64,167.5 bp in Bin 10. In summary, the genomic distance
can somewhat distinguish the interacting gene pairs with
very high function similarity from the rest of interacted
pairs. However, its effect is more pronounced on
Biological Processes and Molecular Function than on
Cellular Component.
Similarly, we calculated the genomic distances for

20,000 randomly selected gene pairs in ten function
similarity bins that did not spatially interact (see the
boxplots in Additional file 1: Figure S5). In contrast to
the interacting gene pairs, the median genomic distances

are relatively close for non-interacting gene pairs in dif-
ferent bins, and gene pairs in high function similarity
bins do not always have minimum median genomic dis-
tances. Furthermore, the genomic distance of gene pairs
with no interaction is relatively longer than substantially
interacting gene pairs in different functional similarity
bins.

Sequence identity of substantially interacting genes at
each function similarity level
We assessed the relationship between sequence identity
and function similarity for substantially interacting gene
pairs (> = 18 Hi-C contacts) in the Hi-C data of the ALL
cell line. Figure 5a, b and c illustrates the box plots of
the sequence identity of gene pairs in 10 function simi-
larity bins for Biological Process, Cellular Component,
and Molecular Function, respectively. The median se-
quence identity of gene pairs in Bin 10 (i.e. similarity
score in [0.9, 1]) is generally higher than the rest bins,
even though the difference is more pronounced for Bio-
logical Process and Molecular Function than Cellular
Component. For Biological Process and Molecular Func-
tion, the median sequence identity in Bin 10 is about
0.6, and for Cellular Component, the median sequence
identity of gene pairs in Bin 10 is about 0.4. The median
sequence identity in other 9 bins for each function cat-
egory is similar to each other and substantially lower
than Bin 10, even though there are quite some outliers
in Bin 10 that have very low sequence identity. The
histogram of the average sequence identity for substan-
tially interacting gene pairs in each functional similarity
bin is reported in Additional file 1: Figure S6. Moreover,
the sequence identity calculated by Needle-Wunsch al-
gorithm is also included in the figure to make compari-
son with the one by dynamic programming technique.
This figure shows that the average sequence identity in

A B C

Fig. 4 The average genomic distances of substantially interacted gene pairs in each functional similarity bin in three function categories. This is
for the primary tumor B-cells (ALL). Figure 4a, b, and c represent the histogram for Biological Process, Cellular Component, and Molecular
Function respectively
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Bin 10 is much higher than most other bins for each cat-
egory. Interestingly, the average sequence identity in-
creases as the function similarity bin increases, and the
average sequence identity in Bin 10 for each category is
always relatively high. Therefore, the sequence identity
could be a factor to predict if two interacting genes have
very high functional similarity score (> = 0.9). The sub-
stantially high sequence similarity between interacting
genes with high function similarity may be partially due
to the duplicated genes that still maintain highly similar
functions and are spatially close [18, 19].

Identification of interacting genes with high function
similarity with sequence identity, genomic distance, and
interaction strength
Since the special group of interacting genes with func-
tion similarity score > = 0.9 tend to have higher sequence
identity, shorter genomic distance, and stronger spatial
interactions, we tested how these three factors could
identify this group of genes. Additional file 1: Figure S7
reports the number of gene pairs with functional similar-
ity score > = 0.9 identified by setting on thresholds on
the interaction number, sequence identity, and genomic
distance of substantially interacting genes (> = 18 Hi-C
contacts) in the Hi-C data of the ALL B-cell, for Bio-
logical Process (Additional file 1: Figure S7 (A)), Cellular
Component (Additional file 1: Figure S7 (B)), and
Molecular Function (Additional file 1: Figure S7 (C)), re-
spectively. The threshold on interaction numbers is set
to 50, genomic distance to 1,000,000 bp for Biological
Process and Molecular Function and 2,000,000 bp for
Cellular Component, and sequence identity to 25 %.
The results shows that applying the thresholds on the

three factors can identify 372–398 common interacting
gene pairs with high function similarity for each function
category, while using each threshold can identify some

gene pairs not recognized by another factor. Applying
sequence identity or genomic distance to interacting
genes can identify more gene pairs with high function
similarity than using interaction number, suggesting
combining sequence identity or genomic distance with
gene spatial interaction information could be more sen-
sitive in identifying genes with high function similarity
than using interaction information alone. In general, the
substantial number of common gene pairs identified by
each of the three factors demonstrates the convergence
in the group of interacting genes with high function
similarity and the distinct gene pairs found by each
factor also suggests the complementarity of the three
factors.

The relationship between sequence identity and function
similarity for substantially interacting gene pairs and
random non-interacting gene pairs
Figure 6 plots function similarity against sequence identity
of 7987 interacting genes pairs with > = 18 Hi-C contacts
(excluding ones without GO annotations) and 20,000 ran-
domly selected, non-interacting gene pairs in the gene-gene
interaction network of the ALL cell line. For non-
interacting gene pairs, the correlation between sequence
identity and function similarity is very low, i.e., 0.02, 0.05,
and 0.03 in three function categories (i.e. BP, CC, and MF).
In contrast, for the substantially interacting gene pairs, the
correlation score is much higher, i.e., 0.67, 0.41, and 0.70
for three function categories, respectively. In order to
compare the function similarities of interacting genes and
non-interacting genes more rigorously, we also select non-
interacting gene pairs by restricting their genomic distances
are similar to the selected highly interacting gene pairs
(within 35 bp). Additional file 1: Figure S8, S9, S10, S11 plot
the function similarity against sequence identity for highly
interacting gene pairs and random gene pairs with similar

A B C

Fig. 5 The boxplot of gene sequence identity against function similarity in three GO categories. Figure 5a, b, and c represent the histogram for
Biological Process, Cellular Component, and Molecular Function respectively. This figure is generated on the gene-gene interaction network of
the ALL B-cell constructed at interaction threshold 18. X-axis denotes the functional similarity scores / bins and Y-axis gene sequence identity
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genomic distance for four cell/cell lines. The correlation be-
tween sequence identity and function similarity for non-
interacting random gene pairs with the genomic distance
restriction is higher than that of non-interacting random
gene pairs without the genomic distance restriction, but is
still lower than that of substantially interacting gene pairs.
For example, the correlation between sequence identity and
function similarity for these three gene groups in the ALL
cell is 0.37, 0.25, and 0.43 respectively. This suggest both
genomic distance and spatial gene-gene interaction be-
tween gene pairs affect the correlation between their se-
quence identity and function similarity, and spatial gene-
gene interaction further strengthens the correlation when
the genomic distance between genes is similar.
Additional file 1: Figures S12 and S13 visualize how

function similarity changes with respect to sequence
identity for non-interacting gene pairs and substantially
interacting gene pairs. The results show that there is a
much stronger correlation between sequence identity
and function similarity for substantially interacting gene
pairs than non-interacting gene pairs.
Figure 7 plots the numbers of interactions of gene

pairs against their sequence identities. The top 20
points with extremely large number of interactions are
removed. According to the plot, the number of
interactions varies a lot when sequence identity is
either around 0 or 1. Indeed, the Pearson’s correlation
between sequence identity and the number of interac-
tions for all spatially interacting gene pairs is only
0.223. Additional file 1: Figure S14 shows the number
of interaction of gene pairs against their sequence
identities for the other three cell lines. Similar pattern
has been discovered.
The weak correlation between interaction numbers and

sequence identity and the relatively strong function predic-
tion power of considering both sequence identity and inter-
action numbers suggest that they are two rather

independent factors informing the function similarity of
two genes. In another words, genes with similar sequence
more likely interact for the purpose of carrying out similar
functions.

The relationship among genomic distance, interaction
numbers, and function similarity for interacting gene
pairs
Figure 8 is the 3D plot of genomic distance, number of in-
teractions and function similarity for interacting gene pairs.
Since it is impossible to calculate the genomic distance be-
tween inter-chromosomal gene pairs, the analysis in Fig. 8
only considers intra-chromosomal gene-gene interactions
in order to calculate the genomic distance between the
genes. According to Fig. 8a and c, although the number of
interactions between genes generally increases as their
genomic distance decreases, most of gene pairs with short
genomic distance, but small number of interactions tend to
have low function similarity in terms of biological process
and molecular function. According to Fig. 8b, for quite a
few gene pairs with high function similarity (>0.9) in terms
of cellular component, their genomic distance varies a lot
when the number of interactions are small, however, when
the number of interactions is large, their genomic distance
is short. In order to consider the genomic distance for
intra-chromosomal gene-gene interactions, we generated
two new analyses by separating the gene pairs into two
groups: short-range interaction pairs and long-range
interaction pairs by using the median genomic distance
between interacted gene pairs as threshold. The 3D plot
of genomic distance, number of interactions, and
function similarity for these two groups are shown in
Additional file 1: Figure S15. Generally, the pattern
regarding the relationships among function similarity,
genomic distance and number of gene-gene interactions
in Additional file 1: Figure S15 is similar to that in Fig. 8.
However, one interesting finding is that the relationship

Fig. 6 Plot of function similarity against sequence identify for substantially interacted gene pairs and non-interacted gene pairs. X-axis denotes the
gene sequence identity and Y-axis the gene function similarity in all three categories (BP, CC, MF), respectively. The blue circle reprensents gene pairs
with equal or more than 18 contacts in each categories (BP, CC, MF), and the red triangle is for gene pairs with no contacts in each categories
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Fig. 7 The sequence identity and the number of gene interactions. The number of interactions is normalized to the range of 0 to 1. The result is
generated on the ALL gene-gene network with > =1 interactions. X-axis denotes the sequence identity and Y-axis the normalized number of interactions

Fig. 8 The 3D plot of genomic distance, number of interactions and the function similarity in three function categories. Figure 8a, b, and c
represent the histogram for Biological Process, Cellular Component, and Molecular Function respectively. The yellow dots represent long genomic
distances and the red ones the opposite
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between genomic distance and function similarity some-
what differ for these two groups. For the gene pairs with
genomic distance longer than the median, the function
similarity clearly decreases as the increasing of genomic
distance (see Additional file 1: Figures S15A, S15B, and
S15C), whereas no very clear such pattern has been
found in gene pairs with short genomic distance (see
Additional file 1: Figures S15D, S15E, S15F). For the
gene pairs with shorter genomic distance, the number
of gene-gene interactions has more impact on function
similarity than genomic distance. Taken together, the re-
sults suggest the complementarity of the two factors in
informing gene function similarity.

Evaluation of gene function predictions based on spatial
gene-gene interactions
We developed a gene function prediction method based
on spatial gene-gene interaction networks, which predicts
the function of a gene using the known functions of its
spatially interacted neighbours (see Methods section for
details). We calculated the probabilistic relationship be-
tween GO terms of a gene and the GO terms of its
neighbouring genes on the spatial interaction networks
constructed from the Hi-C data of the ALL B-cell. The
knowledge was applied to make gene function prediction
on the Call4 cell-line. We generated networks with differ-
ent interaction thresholds (> = 1, 2, 3, 4, 6, 8, 10, 12, 14,
16) for the Call4 cell line. For the case of 0 threshold,
which means there is no interaction between genes, our
current function prediction method based on spatial gene-
gene interaction cannot make any prediction. This means
that our current function prediction method is limited on
predicting the functions of the genes on the gene-gene
interaction network, which could be expanded in the fu-
ture to make function prediction using other information,
such as gene sequence identity.
Figure 9 illustrates the histogram of the similarities be-

tween predicted functions and true functions of the
tested genes. For all the thresholds, the similarity score
of the predictions for the majority of tested genes were
very high (>0.9). When the interaction threshold is set to
the lowest number, i.e.1, at least one highly accurate
function was predicted for ~9000 genes, while much
fewer genes had predictions with relative lower accuracy.
This indicates that the prediction method is rather ro-
bust against the potential noise in the interaction data.
As the interaction thresholds increased, the function
predictions could be made for fewer genes as there were
fewer interacting genes in the spatial gene interaction
network. However, the percentage of genes having high
accurate predictions (similarity score >0.9) is generally
higher. For example, with interaction threshold 1, the
number of genes having high accurate predictions
(similarity score > 0.9) is 9142, and the number of genes

having low accurate predictions (similarity score < 0.1) is
214; with interaction threshold 16, the number of genes
having high accurate predictions (similarity score > 0.9)
is 1357, and the number of genes having low accurate
predictions (similarity score < 0.1) is 33.
The number of GO function terms predicted for each

gene also affects the sensitivity and specification of gene
function prediction. Figure 10 shows the histograms of
the maximum function similarity between predicted GO
terms and true GO terms. Not surprisingly, as the
number of GO term prediction increased, more and
more genes got at least one highly similar GO function
prediction.

Conclusions
In this work, we investigated the relationship between
spatial gene-gene interactions and gene function similar-
ities. Our analyses demonstrate that genes with strong
spatial interaction tend to have (nearly) the same gene
function, while the weaker spatial interactions have
much less correlation with gene function similarity. We
also discovered that interacting genes with very high
function similarity have shorter genomic distance and
higher sequence identity than the rest of the interacting
genes. Combining sequence identity or genomic distance
with gene-gene interactions can help identify the group
of interacting genes with high function similarity. The
power of discriminating gene function similarity by com-
bining spatial gene-gene interactions with sequence
identity or genomic distance appears to be stronger than
using each of them alone. Moreover, since the general
correlation between spatial gene-gene interactions and
sequence identity (or genomic distance) is rather weak
in general, their stronger correlations in interacting
genes with high function similarity seem to suggest that
functioning together might be a reason bringing genes
with highly similar functions together.
To further validate the relationship between spatial

gene-gene interactions, we used the known gene func-
tion of the interacting genes of a target gene to predict
its function and evaluate the prediction accuracy. Our
experiment demonstrates that spatial gene-gene interac-
tions are effective in predicting gene functions.
It is worth noting that the Hi-C data sets used in this

work were generated from a population of cells rather
than a single cell such that the gene-gene interaction
data is an average of the spatial interactions of a popula-
tion of cells whose genome conformation may vary. Fur-
thermore, there is some noise in the data due to the
experimental limitations such as variation of GC content
in genomes and the biases of restriction enzymes. Taken
these two factor together, it is important to normalize
the interaction data to remove the noise or biases as
much as possible. In the past, normalization for the
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Hi-C data was often done on chromosomal contact
maps, where a chromosome was divided into bins of
equal-length and the number of contacts between
bins were calculated and normalized. However, the
situation in our analysis on gene-gene interacting net-
work is different from the normalization of chromo-
somal contact maps because there is no contact
matrix and the lengths of genes are also different.
Therefore, traditional normalization methods cannot
be directly applied to our gene-gene interaction data.

So, we applied a simple, new normalization approach
by selecting different interaction thresholds of con-
tacts in order to get similar topology of networks for
the four cells/cell lines. Although this cross-dataset
normalization approach is not ideal, it can still retain
most of the pattern in the data, leading to valuable
findings regarding gene function similarity. In the fu-
ture, better methods of removing biases in gene-gene
interaction data need to be developed and applied to
improve the analysis of gene function similarity.

Fig. 9 The histograms of function prediction accuracy (the maximum similarity scores between predicted GO terms and real GO terms) on the
spatial gene-gene interaction networks of the Call4 cell line at different interaction thresholds. The y-axis denotes the gene frequencies and the
x-axis the gene function prediction accuracies in 10 bins. 10 GO terms are selected as function prediction for each gene. The number of genes
with gene function prediction accuracy in bin 10 for each gene interaction threshold separately is as follows: 9142, 8628, 7829, 6660, 4158, 2659,
2041, 1738, 1486, and 1357. The number of genes with gene function prediction accuracy in bin 1 for each gene interaction threshold separately
is as follows: 214, 192, 188, 156, 108, 74, 53, 43, 40, and 33
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Moreover, more and more Hi-C data with better qual-
ity than the four datasets used in this work have been
available. We will apply the approach developed in this
work to the new datasets to further study the function
similarity between interacted genes in the near future.

Methods
Calculation of gene function similarity between two
genes
We used the Gene Ontology (GO) terms [17] to describe
the function of a gene in three categories: Molecular

Function (MF), Biological Process (BP) and Cellular
Component (CC). We applied the online tool G-
SESAME [20] and the python package FastSemSim [21]
to calculate the functional similarity score between any
two GO terms. The annotated functions of the human
genes were retrieved from the Uniprot database [22].
We used the maximum function similarity score be-
tween the GO terms of two genes as the measure of the
function similarity between them when we assessed the
function similarity of interacted and non-interacting
gene pairs.

Fig. 10 The histograms of function prediction accuracies for different numbers (1–10) of GO terms selected as predictions. The y-axis denotes the
gene frequencies and the x-axis the gene function prediction accuracies in 10 bins. The number of genes with gene function prediction accuracy
in bin 10 while selecting different numbers (1–10) of GO terms is as follows: 338, 555, 732, 880, 1013, 1131, 1199, 1244, 1312, and 1357. The
number of genes with gene function prediction accuracy in bin 1 while selecting different numbers (1–10) of GO terms is as follows:
67, 30, 13, 22, 50, 48, 47, 38, 32, and 33
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Construction of genome-wide spatial gene-gene inter-
action networks
We downloaded the gene information (the start and end
positions of the genes) of the human genome (build
36.3) from the NCBI website. We only considered the
“GENE” entries without using other entries, such as
“PSEUDO”, “RNA”, “CDS” and “UTR”. Based on the
gene definitions, we constructed spatial gene-gene inter-
action networks from the Hi-C data of the Primary hu-
man B-acute lymphoblastic leukemia (ALL), the MHH-
CALL-4 B-ALL cell line (CALL4), and the follicular
lymphoma cell-line (RL) sequenced using an Illumina
HiSeq 2000 [10], as well as that of the normal human B-
cell line (GM06990) [9].

Calculation of sequence identity
The dynamic programming technique is used to calcu-
late the sequence identity of two protein sequences of a
gene pair. Given two protein sequences: X = (x1, x2, … , xm)
and Y = (y1, y2, … , yn), we define the ith prefix of X as
Xi = (x1, x2, … , xi), i is in the range between 1 and m. The
longest continuous / non-continuous common subse-
quence (LCS) of these two sequences (LCS(X,Y)) is the lon-
gest subsequence which exists in both sequences. We
define c[i, j] to be the length of LCS(Xi,Yj). The following
recursive formula is used for calculating the length of
LCS(Xi,Yj): [23].

c i; j½ � ¼
0; if i ¼ 0 or j ¼ 0

c i−1; j−1½ � þ 1 if i; j > 0 and xi ¼ yj
� �

max c i; j−1½ �; c i−1; j½ �ð Þ if i; j > 0 and xi≠yj
� �

8>><
>>:

A m*n matrix is used to for storing c[i, j]. c[m, n] con-
tains the length of LCS(X,Y). We calculate the sequence
identity of two protein sequences as LCS(X,Y) divided
by the maximum sequence length of X and Y.
To make comparison, we also apply Needleman-

Wunsch algorithm to align two sequences using BLO-
SUM62 as a substitution matrix, and calculate the
sequence identity as the percentage of aligned part
between these two sequences.

Gene function prediction based on spatial gene-gene
interaction networks
The gene function prediction method has Five steps: (1)
calculating the probability of a GO term (GO1) for a
gene given a known GO term (GO2) of its neighboring
gene, i.e., P(a gene has GO1 | the gene’s neighbor has
GO2), based on the entire interaction networks of the
ALL B-cell; (2) For each gene on the interaction network
of the Call4 cell line, randomly selecting one of its
neighboring gene having function annotations; (3)
Obtaining the GO terms of the selected neighboring
gene; (4) For each GO term (Gi) of the neighboring

gene, calculating the probability of other GO terms (Gj)
for the target gene according to the conditional prob-
ability P(Gj | Gi) pre-computed in Step (1); and (5) sum-
ming up the probabilities of each GO term inferred for
the target gene into frequencies and ranking the GO
terms based on their frequencies as the predictions for
the target gene.
Once one or more GO terms are predicted for a gene,

we use FastSemSim to compute the similarity between
each predicted GO term and each of the real GO term
of the gene. The maximum similarity between a pre-
dicted GO term and a real GO term is considered as the
accuracy (i.e. similarity score) of the prediction.
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