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Abstract

Background: The entire collection of genetic information resides within the chromosomes, which themselves reside
within almost every cell nucleus of eukaryotic organisms. Each individual chromosome is found to have its own preferred
three-dimensional (3D) structure independent of the other chromosomes. The structure of each chromosome plays vital
roles in controlling certain genome operations, including gene interaction and gene regulation. As a result, knowing the
structure of chromosomes assists in the understanding of how the genome functions. Fortunately, the 3D structure of
chromosomes proves possible to construct through computational methods via contact data recorded from the
chromosome. We developed a unique computational approach based on optimization procedures known as
adaptation, simulated annealing, and genetic algorithm to construct 3D models of human chromosomes, using
chromosomal contact data.

Results: Our models were evaluated using a percentage-based scoring function. Analysis of the scores of the final 3D
models demonstrated their effective construction from our computational approach. Specifically, the models resulting
from our approach yielded an average score of 80.41 %, with a high of 91 %, across models for all chromosomes of a
normal human B-cell. Comparisons made with other methods affirmed the effectiveness of our strategy. Particularly,
juxtaposition with models generated through the publicly available method Markov chain Monte Carlo 5C (MCMC5C)
illustrated the outperformance of our approach, as seen through a higher average score for all chromosomes. Our
methodology was further validated using two consistency checking techniques known as convergence testing and
robustness checking, which both proved successful.

Conclusions: The pursuit of constructing accurate 3D chromosomal structures is fueled by the benefits revealed by
the findings as well as any possible future areas of study that arise. This motivation has led to the development of our
computational methodology. The implementation of our approach proved effective in constructing 3D chromosome
models and proved consistent with, and more effective than, some other methods thereby achieving our goal of
creating a tool to help advance certain research efforts. The source code, test data, test results, and documentation of
our method, Gen3D, are available at our sourceforge site at: http://sourceforge.net/projects/gen3d/.
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Background
The genetic information of all living organisms, known
as deoxyribonucleic acid (DNA), gives the instructions
for development and functioning of the organism and is,
therefore, crucial for the organism to function. In
humans, the DNA is organized into 46 chromosomes in
the form of 23 pairs, each containing different parts of
the entire DNA. The collection of all these chromo-
somes, known as the genome, resides within the nucleus
of almost all cells of living eukaryotic organisms.
The spatial conformation of the genome is not random

or ambiguous; rather, such conformation creates a spe-
cific 3D structure of chromosomes that serves specific
purposes. Analogous to the significance attributed to the
genetic information of DNA itself, the layout of the
genome is also accredited certain significance [1]. 3D
genome structures are an important aspect of study
because they assist in the understanding of crucial topics
regarding the genome, including: spatial gene regulation,
transcription efficiency, genome interpretation, function
implication, disease diagnosis and treatments, and drug
design [2, 3].
The layout of genome structures depends on two

important relationships: inter- and intra-chromosomal con-
tacts, where a contact, also known as an interaction, refers
to a spatial proximity (e.g. a short spatial distance below a
threshold) between two regions on two different chromo-
somes or the same chromosome. Inter-chromosomal con-
tacts refer to interactions amongst different chromosomes
whereas intra-chromosomal contacts refer to interactions
within one specific chromosome, or how each chromosome
interacts with itself [1, 3]. Therefore, each individual
chromosome has a 3D structure that, combined, form the
3D genome structure. Just like the entire genome, the 3D
structure of each chromosome is also significant in the
understanding of the important topics described [4].
Various techniques aimed at determining inter- and

intra-chromosomal contact data, known as chromosomal
conformation capturing techniques, which include 3C, 4C,
5C, and Hi-C, have seen significant progress in research
and development in recent years. By using conformation
capturing techniques to find intra-chromosomal contact
data, it is possible to determine 3D structures of individual
chromosomes. Therefore, the recent increase in opportun-
ities to determine such chromosomal contact data has also
increased the possibilities of determining the 3D struc-
tures of genomes and chromosomes [4]. One particular
chromosomal conformation capturing technique ap-
plied here is Hi-C, which can determine both intra-
and inter-chromosomal contact data at the genome
wide scale [4].
Recently, a number of computational methods, such as

the MCMC5C method based on 5C data [5], gradient
descent based method [1], Integrated modeling platform

also based on 5C data [6], and the Bayesian 3D Con-
structor (BACH) from Hi-C data [7], have been devel-
oped to reconstruct 3D models of a chromosomal region
or the entire chromosome from intra-chromosomal con-
tact data. Here, we develop a new computational meth-
odology, called Gen3D, to utilize Hi-C data to produce
3D models of chromosome structures.

Methods
Overview of methodology
Our approach to modeling 3D structures of chromo-
somes, called Gen3D, first involved processing Hi-C
chromosomal contact data. As our input data, we used
the aligned Hi-C data of a normal human B-cell, from
the data of Lieberman et al. [4], and of a malignant hu-
man B-cell of an acute lymphoblastic leukemia patient,
from the data of Wang et al. [3]. The processing of such
Hi-C data resulted in a contact matrix. The contact
matrix resembles an overview of all the contacts of a
chromosome derived from the Hi-C input data. A 3D
model of a chromosome can be created using the chro-
mosome's contact matrix. But first an initial randomized
structure of the chromosome must be created. Such
initial structure was constructed using one of two strat-
egies: a technique known as “growth” [8] or a random-
ized sphere. Once the initial model was created, three
optimization algorithms were then applied sequentially
to the random model to increase the model’s accuracy.
The three optimization algorithms implemented were
adaptation [8], simulated annealing [9], and genetic algo-
rithm [10]. The final result was a sole 3D model of a
chromosome structure. The flow chart shown below in
Fig. 1 illustrates the modeling methodology and steps
used in our approach. Furthermore, to quantify our
results and to aid in the optimization techniques used, a
scoring system representing the accuracy of the gener-
ated models was created. The following is a detailed
description of the scoring system along with the chrono-
logical presentation of each main step of the various pro-
cedures and techniques used in the Gen3D methodology.

Hi-C data processing
We began the 3D chromosome modeling procedure by
processing the input Hi-C chromosomal contact data of
the chromosome. The input data comprised a sequential
list of all the contacts for a particular chromosome,
where a contact refers to a spatial proximity (e.g. a short
spatial distance below a threshold) between two regions
on the physical structure of the chromosome. The list of
contacts from the input data was gathered from the Hi-
C conformation capturing technique [4]. The content of
each contact from the input data contained three pieces
of information: the chromosome of the specified contact
and the two genomic locations corresponding to the two

Nowotny et al. BMC Bioinformatics  (2015) 16:338 Page 2 of 19



locations of the contact. From the entirety of the data, a
contact (or interaction) matrix was formed for the
chromosome. Each contact matrix resembles an overview
of the contacts for that chromosome. Figure 2 shows an
example of a contact matrix of chromosome 22.
The contact matrices were developed by first finding

the number of loci of each chromosome. A locus, also
known as a region of a fixed length (e.g. 1 Mb), is a
small and specific part of the chromosome. The number

of regions, or loci, per chromosome varies and is
based on the size of the chromosome and the reso-
lution (i.e. the fixed length of a region). The number
of regions was obtained by subtracting the lowest genomic
location found from the highest genomic location found
in the list of genomic locations from the input Hi-C con-
tact data. Then, that value (e.g., the length of the chromo-
some) was divided by the resolution to obtain the number
of regions in the chromosome. The resolution in our case
was 1 megabase (Mb). The contact matrix utilized the
number of regions in the chromosome as the x and y-
axes. For example, the contact matrix for chromosome 22
was found to contain 50 total regions of 1 Mb, and
therefore had 50 elements for both the x-axis and y-
axis. Figure 2 shows the contact matrix of chromosome
22 with the 50 elements for the x-axis and y-axis. The
number of regions in other chromosomes ranged from
27 (chromosome 21) to 241 (chromosome 2).
The content of a contact matrix consisted of a count

of the total number of contacts recorded (i.e. interaction
frequency) for the corresponding regions from the input
data. This count was calculated during the processing of
the Hi-C data. First, for each contact processed of the
input Hi-C data, the two regions of the contact were
determined based on the two corresponding genomic lo-
cations. Then, the corresponding element in the contact
matrix that correlated to the two regions of the contact
was found. The value for this element was then
increased by one for each contact recorded. Thus, the
element in row i and column j of a contact matrix con-
tained the quantity of contacts that were recorded in
the input data for regions i and j. After processing the
entirety of the Hi-C data, the contact matrix contained
the total number of contacts for every combination of
regions.
If an element of a contact matrix contained a number

greater than zero, then that region was considered to be
a 'contact region' because it contained at least one con-
tact. Conversely, an element that contained the number
zero was considered to be a 'non-contact region' because
it contained no contacts. This is displayed in the
example contact matrix of chromosome 22, shown in
Fig. 2, in which contact regions are indicated by the
yellow color and have a number value greater than zero,
and non-contact regions are indicated by the dark green
color and have a number value of zero. Diagonal re-
gions, indicated by the orange color, represent contacts
from the same regions and are therefore not relevant.
The input Hi-C chromosomal contact data contains

some biases such as GC content, mapping, and sequence
uniqueness. A normalization of the input data before
utilization would sometime reduce these biases [11]. In
this work, we applied two normalization techniques
(Tuan et al. [1] and Imakaev et al. [12]) to normalize the

Fig. 1 Flow chart of Gen3D methodology. Detailed flow chart
illustrating the relationship between the steps and processes of
the Gen3D methodology
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Hi-C data and compared the models built from the nor-
malized data with those from the initial un-normalized
data.
There exists another problem when processing Hi-C

data of chromosomes: the centromere regions of the
chromosomes are not recorded. The centromere is the
region of the chromosome where the two sister chroma-
tids are bound together. As a result, no contact data was
recorded for centromere regions and thus those regions
required being omitted from the model as suggested by
Tuan et al. [1]. After omitting the centromere regions,
the total number of 1 Mb sized regions was reduced by
the number of centromere regions. As a result, the
contact matrices also shrunk according to the value of
the corresponding chromosome's centromere regions.
The example contact matrix of chromosome 22 shown
in Fig. 2 has 14 omitted centromere regions represented
by the light green regions on the top and on the left.

Thus, Chromosome 22 has only 36 relevant regions after
removing the 14 centromere regions.
The construction process of a chromosomal model,

which is further described in subsequent sections, in-
volved plotting each loci, or region, of the chromosome,
on a 1 Mb scale, on a 3D coordinate system. The dis-
tance between each region was determined by that chro-
mosome's contact matrix. The objective of our modeling
process was to reconstruct 3D models of chromosomes,
each represented as a collection of spatial positions of its
loci that satisfy the intra-chromosomal contacts between
loci as well as possible.

Scoring functions
Once a model has been created, it is crucial to deter-
mine the effectiveness and efficiency of the model
constructed by the employed methodology. This is
performed by determining the level of congruency

Fig. 2 Contact matrix of chromosome 22. A contact, or interaction, matrix derived from Hi-C data of chromosome 22. The x and y-axes correspond to
the regions of the chromosome. The number value of each element denotes the number of contacts for the corresponding regions. Here the yellow
regions are contact regions: regions with at least one recorded contact; dark green regions are non-contact regions: regions with zero recorded contacts;
light green regions are centromere regions: regions with no contact data; and orange regions are diagonal regions that correspond to the same regions
of the chromosome and therefore aren’t considered
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between the constructed model and the contact matrix
derived from the Hi-C input data. This is represented
using scoring functions. Scoring functions are needed
to numerically assess the accuracy of the 3D models
created by providing a quantitative representation of
the success rate.
In addition, scoring functions are necessary for the

function of the methodology. The optimization algo-
rithms utilized (adaptation, simulated annealing, and
genetic algorithms) all require scoring functions to be
used as a conditional for structure improvement by
determining whether the value of the score of the struc-
ture has increased. This in turn controls further actions
of the algorithms. Therefore, we devised a scoring
function to quantitatively represent the level of con-
gruency between the constructed model and the con-
tact matrix, as well as to help implement and improve
our methodology.
The scoring function implemented had four main

components: a contact satisfaction score, a non-
contact satisfaction score, an interaction frequency
score, and a maximum and minimum distance satis-
faction score. The scoring function produced a final
score of the model in the form of a percentage that
was calculated using a weighted average of all four of
the sub-scores. The subsequent section contains a
description of the four sub-scores and the final score
calculation.

Contact satisfaction score
The contact satisfaction (CS) sub-score represents the
percentage of initial contacts that were satisfied in the
final model. Determining whether contacts were satisfied
in the final model involved finding the distance between
each pair of adjacent points of the model for points that
corresponded to a contact region. If that distance was
below a predefined distance threshold, then that particu-
lar contact was considered satisfied. Therefore a distance
threshold parameter was required to find and calculate
the CS score, as suggested by Tuan et al. [1]. In this
work, the value of the square of the distance threshold
used was 7 micrometers2 (μm2). The CS score was
calculated with the formula:

CS ¼ total contact satisfaction count � 100ð Þ=
total contact countð Þ

The total contact count was the total number of con-
tact regions in the contact matrix; therefore the total
contact count was calculated from the input Hi-C data.
The total contact satisfaction count was the total num-
ber of those contact regions that were satisfied in the
final model; therefore the total contact satisfaction count
was calculated from the finished model. The two values

were divided and multiplied by 100 to get the final result
in the percentage form.

Non-contact satisfaction score
The non-contact satisfaction (NS) score represents the
percentage of non-contacts that were satisfied in the
model. The NS score was calculated in a similar manner
to the CS score. Non-contacts in the final model were
considered satisfied if the distance between each pair of
adjacent points corresponding to a non-contact region
was above the predefined distance threshold value.
Therefore the distance threshold parameter was also
required to find the NS score, of which the same value,
7 μm2, was used. The NS score was calculated with the
formula:

NS ¼ total non−contact satisfactioncount � 100ð Þ=
total non−contact countð Þ

Like the CS score, the total non-contact count was
calculated from the contact matrix whereas the total
non-contact satisfaction count was taken from the fin-
ished model.

Interaction Frequency satisfaction score
The Interaction Frequency satisfaction (IF) score repre-
sents the percentage of contacts that were satisfied in
the model, similar to the CS score, but weighted by the
actual interaction, or contact, frequency. The IF score
was calculated with the following formula:

IF ¼
X

Cij � IF ij
� � � 100

� �
= total IFð Þ

Cij was 1 if the contact at points i, j was satisfied,
and 0 if not; IFij was the interaction frequency count,
or number of contacts recorded, at points i, j; and
total IF was the total interaction frequency, or total
number of contacts, of the entire contact matrix
taken from Hi-C data. The ∑ (Cij * IFij) statement de-
termined the sum of all of the contacts of the model,
which had a corresponding region that was satisfied
in the final model. That value was divided by total IF
and multiplied by 100 to get the IF score in the per-
centage form. The distance threshold parameter of
7 μm2 was again required.

Maximum and minimum distance satisfaction score
This score shows the percentage of regions of the final
model that satisfied the maximum or minimum distance
restraints. The predefined values used for the restraints
were 20.25 μm2 for the square of the maximum distant
restraint and .2 μm2 for the square of the minimum
distant restraint as suggested by Tuan et al. [1]. The
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result was a maximum and minimum satisfaction score
(MS) which was calculated with the below formula:

MS ¼ maxandmindistance satisfied count � 100ð Þ=
number of regionsð Þ

The max and min distance satisfaction count was
determined by calculating the number of regions of the
final model that fell within the bounds of the maximum
and minimum distance restraints. This value was then
multiplied by 100 and divided by the total number of
regions of the Hi-C data to get the MS satisfaction score
in the percentage form.

Combination of scores
To get the final score representation of a model, the four
sub-scores were merged. The combination of the scores
involved taking the weighted average of all sub-scores
such that the weight of each sub-score was different. For
our purposes, the weight used for the CS score for all
chromosomes was 2; the weight used for the NS score
for all chromosomes was 2; the weight used for the IF
score for all chromosomes was 3; and the weight used
for the MS score for all chromosomes was 1. Weights
for scores were assigned to give preference to more
important aspects. For example, the IF score best repre-
sents the model’s score through consideration of fre-
quency of contacts, and was therefore given a higher
weight. Whole integers weights were chosen for simpli-
city as we found that deviations of decimal values had
little to no effect on the final scores.

Model construction
A discussion of the actual model construction follows.
The construction process is illustrated by the flow chart
in Fig. 1, which displays a visual explanation of how the
following steps were integrated. The model construction
began, succeeding the processing of the Hi-C data, with
a random initial model creation through the growth step
or with a random sphere followed by the optimization of
the model through the adaptation step, the simulated
annealing step, and the genetic algorithm step. Resulting
from such steps, which are explained below, was the
final model conformation.

Growth
Before the content of the contact matrices can be uti-
lized, an initial structure must be randomly created to
act as the basis of the model. To create such initial
structure, we began by plotting each 1 Mb sized region
using a probabilistic technique known as growth. The
growth step was inspired by similar applications for pro-
tein as described by Vendruscolo et al. [8].

As implied by the name, the growth step involved
adding a single region at a time resulting in step-by-
step growth of the model. We utilized the following
equation to add each point:

Ri ¼ Ri−1 þ r

where i represented the index of the points; R repre-
sented a specific point, which made Ri the added point,
and Ri-1 the previous point from which the new points
was extended; and r represented the vector, by which
point Ri was extended from point Ri-1, with a random
length in between 0 and 1 μm and a random direction.
Unlike protein conformation creation, there is no known
information about the vector r or the relationship
between two adjacent points for chromosomes making
the initial prediction of the 3D structures randomized
and in need of further data processing, which was done
and is described below.
As the growth stage is designed for proteins, chromo-

some modeling is different; therefore it is sometimes
advantageous to skip the growth stage for chromosomes
with under 200 regions, or loci. Instead, it is advanta-
geous to start with a random, spherical initial structure
as suggested by Vendruscolo et al. [8]. In our case, only
chromosomes 1, 2, and 3 had more than 200 regions
and therefore the growth stage was applied. For the
other chromosomes, the growth step was skipped, and
the next step, adaptation, was applied by using random
points on a unit sphere with a radius of 1 μm as the ini-
tial conformation. To better exemplify this decision, we
tested on data using the reverse strategy. Specifically, we
applied a random sphere as the initial conformation for
chromosomes 1, 2, and 3 and growth for the remaining
chromosomes. As a result, the average score was 7.77 %
lower for the contact satisfaction scores and 12.59 %
lower for the non-contact satisfaction scores.

Adaptation
With the initial conformation of the model built as de-
scribed above, the first optimization algorithm, known as
adaption, was implemented. Adaptation involved a refine-
ment of the structure through randomized, local moves
determined by whether such move increased the accuracy,
or score, of the model, hence the name “adaptation” as the
structure 'adapts' to achieve the best result.
To perform this step, we chose a random 1 Mb point,

Ri, along the structure and moved that point according
to a random vector, r, which had the length of a random
number between 0 and 1 μm and a random direction.
Such movement was performed separately for 10 trials
on the same point. The result was 10 possible move-
ments for the point Ri, and the best movement was
chosen based on which increased the total score the
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Fig. 4 Visualization of successive iterations of adaptation step. Ten visualized models of chromosome 21 resembling different successive iterations
of the adaptation step. Visualization is shown, from left to right and top to bottom, for every 5000 iterations to demonstrate the effect on the
model the adaptation step has

Fig. 3 Visualization of the adaptation process. A visualization of a model undergoing the adaptation process. The model before undergoing
adaptation is shown in light green and the model after resulting from the adaptation step is shown in light blue
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most. Once the best movement was determined, the
same translation, r, was then applied to the remaining
points from Ri+1 to Rn, with Rn being the last point.
Thus, the random vector r was added to Ri+1, Ri+2, Ri+3,
and so on up to Rn. A visualization of the adaptation fea-
ture is represented in Fig. 3.
This repeated movement on the entire model created

one iteration of the adaptation step. To complete the
adaptation stage, the process was repeated for 50,000
iterations. Every structure that resulted from a successful
iteration of the adaptation step was saved separately. By
the end of all the iterations, the result was an ensemble
of different model structures, each having started from
the same initial conformation structure but having
completed a different variation of the adaptation step.
Figure 4 shows ten visualized models of chromosome
21, the results of the adaptation stage after every 5000
iterations up to the 50,000th iteration, to exemplify the
progression.

Simulated annealing
After the adaptation step was completed, the next
optimization procedure implemented was simulated an-
nealing (SA) in accordance with Kirkpatrick et al. [9]. SA,
inspired by the metallurgy procedure of similar name, in-
volved searching for random new solutions, or new
models, that were alternative to the current solution, or

current model. If the new solution was better, in that it
had a higher score, then the new solution was accepted as
the current solution. However, if the new solution was
worse, then such solution could still be accepted but with
low probability. This action is the key feature of SA, differ-
entiating it from similar, greedy optimization algorithms.
The purpose of accepting worse solutions, or less

accurate models with a lower score, is to avoid 'local
optimums' which are isolated extremes of efficiency. By
doing such, it is possible to eventually arrive at an even
better solution, or a more accurate model with a higher
score, than the original as the SA process is performed
multiple times, in our case 50 times. Not doing so, as is
the case with the similar hill-climbing algorithm, could
result in little to no progress from the original solution,
as little or no immediate changes would result in a
better solution.
To exemplify the benefits of SA as opposed to a hill-

climbing algorithm, which is similar besides not accept-
ing worse solutions, we can apply the procedure in ana-
logy to the problem of climbing a mountain filled with
numerous peaks in which the highest peak is the desired
location. Every peak that isn’t the highest is a local
optimum and a simple hill-climbing algorithm would
stop at the first occurrence of a local optimum, as no
immediate actions would result in immediate progress
up the mountain. Rather, it is beneficial to descend from

Fig. 5 Convergence testing results. Six pairs of two separate models generated side by side for convergence testing comparison. From left to right,
top to bottom, the chromosomes used are chromosome 16, 19, and 21 from the cancerous cell data, followed by chromosome 14, 15, and 21 from
the normal cell data
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such peaks to eventually reach the highest peak, as is the
case and benefit with SA.
A key feature of SA that makes this behavior pos-

sible is known as 'temperature' which comes from the
origin of SA itself in which materials like glass or
medals are repeatedly heated and cooled to change its
properties, such process is known as annealing. In SA,
the temperature, which is a numeric value, is set to a
fixed value that gradually 'cooled', or decreased, over
time. The value of this temperature helps determine
whether or not the worse solution is accepted. This
temperature value exists to set a soft limit on SA, as
over time, the value of the temperature decreases more
and more which causes the new solution to become less
and less likely to be accepted. Additionally, the value of
the difference between the current solution and new solu-
tion was also considered in making the decision to accept
or not. A simple formula, which is a variation of the

Boltzmann probability, utilized these factors to decide on
whether to accept the worse solution:

exp − E–Eið Þ=T ið Þ

where E represented the score of the current solution;
Ei represented the score of the potential new solution;
and Ti represented the temperature when Ei was found.
If this value was greater than a random number between
0 and 1, then the new solution was accepted as the
current solution. The process was then repeated with
the new solution.
With regards to SA being applied to 3D chromosome

modeling, each model in the ensemble of models was
independently compared to a new model that was gener-
ated using the adaptation procedure, described earlier. If
the new model had a higher score then it was accepted
as the current model, but if the new model had a lower

Fig. 6 Robustness by recovery testing results. Six pairs of two separate models generated side by side for robustness by recovery comparison.
From left to right, top to bottom, the chromosomes used are chromosome 19, 20, and 21 from the normal cell data, followed by chromosome
19, 20, and 21 from the normal cell data
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score then it was accepted if it satisfied the Boltzmann
probability equation. After 50 iterations of SA, the result
was a collection of refined models each with a higher
score than before.

Genetic algorithm
Following simulated annealing, the next optimization
procedure implemented was genetic algorithm (GA) in
accordance with Fonseca et al. [10], which was imple-
mented to achieve better scores of 3D models. GA con-
sists of three basic steps: natural selection, crossover,
and mutation. These three processes prove to be benefi-
cial optimization techniques due to their inspirations
from evolution. The evolutionary process in nature,
which involves the three processes of the same name,
succeeds in yielding generations of species more advan-
tageous than the previous. By mimicking the evolution-
ary process via computational means, the same results
are achieved for 3D models because the general princi-
ples of evolution still apply in a computational setting.
Following is a description of the three GA processes ap-
plied in our approach: natural selection, crossover, and
mutation.
After previous optimization from SA, the result was a

group of refined structures. The first step of GA, natural
selection, was then implemented and involved reducing
the produced ensemble to only the models with the
highest of scores. The less accurate models, those with
the lowest scores, were discarded as per the principle of
the natural selection where only the most successful
survive.
Once we were left with the most accurate models from

the natural selection step, the next step in GA, known as
crossover, was implemented. The crossover step involved
swapping the coordinates of certain models at random
crossover points. For example, consider models An and
Bn both consisting of n points:
A1, A2, A3, … An-1, An

B1, B2, B3, … Bn-1, Bn

After implementing crossover with a crossover point
at n = 2 the models would become:
A1, A2, B3, … Bn-1, Bn

B1, B2, A3, … An-1, An

The result of performing the crossover step on the
models was an ensemble of 'children' models derived
from the mixing of points from the 'parent' models. This
is analogous to gene crossover during reproduction in
nature.
The final step of GA, mutation, following natural

selection and crossover, was lastly implemented. The
mutation step involved tweaking the coordinates of one
or more random points in each of the models. Tweaking
of the point involved a random movement in a random
direction for just that point, and the result was a slightly

modified model. If such mutation increased the score of
the model, then the mutation was kept. The mutation
step was performed over ten thousand times with every
model to achieve more accurate models.
GA was the last implemented optimization algorithm.

GA followed SA because the one of the prime purposes of
GA is to reduce an ensemble of models to only the most
accurate of models through the natural selection step.
Consequently, SA generates this ensemble of models
therefore GA must follow SA to be most effective.
The implementation of GA turned a group of refined

chromosome models into a more selective, integrated,
and improved group that only contained the best models
as per natural selection; contained models with swapped
portions from cross over; and contained points that were
further improved through mutation. The result from the
completion of GA, and the entirety of implemented
optimization procedures, was this improved collection of
3D chromosome models.

Table 1 Scores of models from malignant B-cell Hi-C data of
Wang et al. [3]

Chromosome Contact satisfied
score (%)

Non-contact satisfied
score (%)

IF satisfied
score (%)

1 71 70 89

2 66 66 87

3 69 71 88

4 73 74 91

5 70 69 90

6 73 73 91

7 72 70 91

8 70 80 89

9 84 70 96

10 72 70 91

11 76 73 93

12 72 72 90

13 81 76 94

14 81 79 95

15 73 73 92

16 80 78 96

17 74 73 92

18 93 90 97

19 82 74 90

20 90 82 92

21 95 99 96

22 92 95 95

Average 77.68 76.22 92.05

Column 1: list of chromosomes in chronological order; Columns 2: the percentage
of satisfied contacts; Columns 3: the percentage of satisfied non-contacts; Columns
4: the percentage of satisfied interaction frequencies; all for models of 22 pairs of
chromosomes from the Hi-C data of Wang et al. [3]. Average of scores is also
recorded in the last row
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Final conformation
The result from the implementation of the optimization
procedures was an ensemble of possible structures, hav-
ing been improved and altered through the adaptation,
simulated annealing, and genetic algorithm processes.
To achieve a sole 3D model of the chromosome in con-
sideration, the model with the highest score amongst the
remaining models was selected as the final chromosome
structure representation.

Results and discussion
Overview of results
To execute our methodology described we used the
Hi-C data of a normal human B-cell, from the data of
Lieberman et al. [4], as well as the Hi-C data of a
malignant human B-cell of an acute lymphoblastic
leukemia patient, from the data of Wang et al. [3], as
the input data. The output was 3D models of 23
chromosome structures from both sets of input data.
We utilized the scoring system afore mentioned to
quantify the results of our models to get a better repre-
sentation of the accuracy. We also employed the use of

heat maps to create matrix-based representations of
the accuracy of the models. Finally, we visualized the
3D chromosomal models themselves to get a visual
representation of the model and to compare with other
methods. The results from our experiment are pre-
sented via the scoring system, heat maps, and visuali-
zations below, along with various algorithm validation
techniques such as convergence testing and robustness
by recovery testing. Various made comparisons with
similar experiments, which serve the purpose of valid-
ating and placing our approach, are also presented
below. Finally, some inconsistencies and areas of future
study are discussed.

Algorithm validating
To validate and test the success and consistency of our
algorithm, we performed convergence testing which in-
volved generating multiple models of the same chromo-
some then comparing the various versions of the results.
Further evidence for the consistency and success of our
algorithm would be provided if the separately generated
models were similar in terms of score and visualization.

Table 2 Scores of models from normal B-cell Hi-C data of Lieberman et al. [4]

Chromosome Contact satisfied
score (%)

Non-contact satisfied
score (%)

IF satisfied score (%) Avg. of Dist. of unsatisfied
contacts (μm)

Avg. of Dist. of unsatisfied
non-contacts (μm)

1 79 79 77 11.26 3.95

2 78 78 77 12.36 3.89

3 75 75 78 11.95 3.81

4 83 84 81 10.29 4.49

5 82 85 80 10.98 4.27

6 79 79 80 10.88 4.33

7 79 79 78 12.12 3.54

8 82 85 80 10.47 4.34

9 82 86 80 12.17 4.05

10 79 80 78 11.61 3.97

11 77 77 77 11.52 3.75

12 79 78 80 12.41 4.22

13 80 81 79 10.28 4.43

14 75 75 78 13.21 4.31

15 79 81 78 11.48 4.49

16 83 81 81 10.07 4.08

17 80 79 79 10.11 4.73

18 77 78 78 11.4 3.24

19 83 86 80 11.44 4.34

20 78 78 79 11.97 3.5

21 91 89 85 11.28 5.05

22 89 85 84 9.38 4.69

Average 80.41 80.82 79.41 11.30 4.16

Same legend as Table 1 only using 22 chromosomes from the Hi-C data of Lieberman et al. [4] and including additional columns showing the average distance of
unsatisfied contacts and the average distance of unsatisfied non-contacts
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The juxtaposition of the visualization for two trials for
various chromosomes is shown in Fig. 5. From left to
right, top to bottom, the chromosomes used for conver-
gence testing are chromosome 16, 19, and 21 of the
cancerous cell [3], followed by chromosomes 14, 15, and
21 of the normal cell [4]. As is evident through the fig-
ure, each trial of convergence testing resulted in the two
models having similar 3D structures. For visualization,
the UCSF Chimera [13] tool was used. The similarity
between each of the pairs of models derived separately
from the same chromosome contact data shows the
consistency and success of the methodology.
To test the robustness of our algorithm, recovering

capability was checked as explained by Baù et al. [6].
Recovering capability first involved generating a model
using Hi-C data. After that, a contact matrix was created
from that generated model using contact and non-
contact satisfaction data. Using that contact matrix
another model was generated using our methodology.
The visualization of the two models, before and after,
were then compared. Several examples of recovering

capability are shown in Fig. 6. From left to right and top
to bottom, the shown models are of chromosome 19, 20,
and 21 of the normal cell [4], followed by chromosome
19, 20, and 21 of the cancerous cell [3]. For visualization,
the UCSF Chimera [13] tool was used. From the figure,
it is apparent that the two generated models for each
chromosome are quite similar in structure. The similar-
ity between two models of the same chromosome de-
rived before and after a contact matrix shows the
robustness of the methodology.

Evaluation of scores of models
As described before, a scoring system was created to nu-
merically assess the accuracy of the 3D models created
and provide a quantitative representation of the success
rate. Table 1 shows the score representations of the re-
sults from our input data, the malignant B-cell from the
data of Wang et al. [3], by showing the CS score, NS
score, and IF score of the resulting models. The value of
the square of the distance threshold parameter was
7 μm2 as suggested by Tuan et al. [1], and was used to

Table 3 Scores of models from normalized Hi-C data of
Wang et al. [3]

Chromosome Contact satisfied
score (%)

Non-contact satisfied
score (%)

IF satisfied
score (%)

1 81 50 91

2 75 41 85

3 72 41 76

4 76 41 100

5 78 41 85

6 71 41 89

7 71 41 85

8 94 42 92

9 93 40 90

10 73 40 86

11 69 42 86

12 80 41 100

13 88 40 88

14 95 42 96

15 80 41 90

16 66 42 76

17 91 41 88

18 60 41 69

19 67 42 23

20 93 40 85

21 96 50 100

22 83 45 75

Average 79.64 42.04 84.32

Same legend as Table 1 only with the normalized Hi-C data from Wang et al. [3]

Table 4 Scores of models from normalized Hi-C data of
Lieberman et al. [4]

Chromosome Contact satisfied
score (%)

Non-contact satisfied
score (%)

IF satisfied
score (%)

1 66 40 78

2 60 47 73

3 69 40 76

4 78 41 100

5 82 41 93

6 65 48 83

7 73 46 83

8 91 41 92

9 91 40 94

10 73 57 87

11 67 44 80

12 80 41 100

13 80 48 88

14 96 75 95

15 80 50 89

16 86 45 91

17 80 44 29

18 93 100 90

19 87 60 92

20 89 57 92

21 89 46 92

22 96 50 96

Average 80.5 50.04 86.04

Same legend as Table 2 only with the normalized Hi-C data from Lieberman et al. [4]
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find these scores. The average score for the CS score
across all chromosomes was 77.68 and 76.23 % for the
NS score. The average score for the IF score was
92.05 %. Table 2 shows the same score representations
only using the normal B-cell input data from the pub-
lished Hi-C data of Lieberman et al. [4]. Additionally,
the average distance of unsatisfied contacts and the aver-
age distance of unsatisfied non-contacts are also re-
corded in this table. Here the average scores for the CS
score for all chromosomes was 80.41 and 80.81 % for
the NS score. And the average score for the IF score was
79.41 %. The average of the average distance of unsatis-
fied contacts across all chromosomes was 11.30 μm and,
alternatively, 4.16 μm for non-contacts. The resulting
high percentages for the CS, NS, and IF scores demon-
strate the effectiveness of our methodology.
Normalization in accordance with Imakaev et al. [12]

was implemented in hopes of achieving better scores
through eliminating certain problems associated with bias
and noise such as GC content, mapping, and sequence
uniqueness [11]. The resulting scores from normalized
data were evaluated to determine the effectiveness of

normalization. From the normalized cancerous cell data
of Wang et al. [3] the average CS score for all chromo-
somes was 79.64 %, the average NS score was 42.04 %,
and the average IF score was 84.32 %. The results for all
chromosomes of the normalized data of the cancerous cell
are presented in Table 3. The non-normalized results from
the same dataset were 77.68 % for the CS score, 76.22 %
for the NS score, and 92.05 % for the IF score. Although
the CS score was higher for the normalized data, the
NS and IF scores were lower, therefore the applied
normalization technique did not improve the overall
scores of the cancerous cell data. From the normalized
normal cell data of Lieberman et al. [4] the average CS
score for all chromosomes was 80.5 %, the average NS
score was 50.04 %, and the average IF score was
86.04 %. Table 4 shows the results of the normalized
data from the normal cell for all chromosomes. The
non-normalized results were 80.41 % for the CS score,
80.82 % for the NS score, and 79.41 % for the IF score.
The average scores actually improved slightly, by
0.09 %, for the CS score and decently for IF score, by
6.63 %. However the NS score dropped considerably, by

Fig. 7 Heat map representation for chromosome 22. Heat map representation of model of chromosome 22 where 1 (red) represents a contact
satisfied, 3 (light blue) represents a non-contact satisfied, 2 (white) represents a contact unsatisfied, and 4 (dark blue) represents a non-contact
unsatisfied. X and y-axes resemble each region of the chromosome
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30.78 %, therefore the overall score was lower for the
normalized data. Overall, the outcome of applying
normalization to our method does not consistently in-
crease the overall scores of 3D chromosome models.

However, this observation may be specifically related to
our method as it has been shown that the normalization
of Hi-C data can improve 3D genome models with other
methods [1].

Fig. 8 Visualized chromosome models of Hi-C data from Wang et al. [3]. Chronological order from left to right and top to bottom, sequentially, of
visualized models of the 22 chromosomes from the Hi-C data of Wang et al. [3]

Nowotny et al. BMC Bioinformatics  (2015) 16:338 Page 14 of 19



Heat map representation
To further demonstrate the accuracy of our generated
models, we created a heat map representation of the
satisfied and unsatisfied contact and non-contact re-
gions for each model. Heat map representations are ef-
fective at representing the accuracy of the model. The

heat map shows a matrix in which the regions of the
resembled chromosomes are displayed as the x and y-
axis, similar to the contact matrix. The content of the
elements of the heat map resembled a 1 (background of
red) if the corresponding regions indicated a contact
satisfied; a 3 (light blue) if the corresponding regions

Fig. 9 Visualized chromosome models of Hi-C data from Lieberman et al. [4]. Chronological order from left to right and top to bottom, sequentially, of
visualized models of the 22 chromosomes from the Hi-C data of Lieberman et al. [4]
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indicated a non-contact satisfied; a 2 (white) if the
corresponding regions indicated a contact unsatisfied;
and a 4 (dark blue) if the corresponding regions indi-
cated a non-contact unsatisfied. Figure 7 shows a heat
map representation of the model generated for chromo-
some 22. Figure 7 visually demonstrates the large per-
centage of satisfied contact and non-contact regions
through the red and light blue regions.

Visualization of models
To get an idea of what the generated 3D models
looked like, we visualized the models using the 3D co-
ordinates from the output data of our methodology.
Visualizing the generated 3D models is also important
for performing comparisons with different 3D chromo-
some model generation methods. Using the Pymol tool
[14] for visualization, chromosomes 1 through 22 from
both data sets were visualized and are shown in Figs. 8
and 9. The models of Fig. 8 were generated from the
published Hi-C data of Wang et al. [3] and the models
of Fig. 9 were generated from the published Hi-C data of
Lieberman et al. [4]. Additionally the PDB files containing
3D coordinates of all models used for visualization are
published on our sourceforge site.

Comparison with MCMC5C
To better understand the effectiveness of our approach,
we compared our results with the results from a similar
approach known as Markov chain Monte Carlo 5C
(MCMC5C) that was also designed to create 3D chromo-
some structures [5]. Using the MCMC5C approach with
the code and data published by Rousseau et al. [5],
combined with our Hi-C data and appropriate parameters,
we generated 3D models of all chromosomes. Using 100
million iterations an ensemble of 100 structures was
generated, of which the scores were calculated for the best
structures. The juxtaposition of the CS and NS scores of
the generated models for both the MCMC5C method and
our method is shown in the form of bar graphs in Fig. 10.
As is clear by the graphs, our approach provided con-
sistently better scores that are significantly higher for
most chromosomes, including a better contact score
for every chromosome and a better non-contact score
for every chromosome except for chromosome 2. The
contrast is also represented through the comparison of
the visualized model of chromosome 12 in Fig. 11. Here
the MCMC5C method is represented on the left and
our Gen3D method represented on the right. It is
apparent from the visualized models that the two
approaches produced models with obvious differences.
Here, the Pymol tool [14] was used for visualization of
the models.

Future studies
A number of additional future areas of study arise from
this experiment. One such possible direction to investigate
in the future is the incorporation of additional optimization
techniques into the methodology that would further
enhance the score of the models and, therefore, the models
themselves. A number of such techniques deserve atten-
tion to determine whether incorporation would be benefi-
cial. For example, an optimization procedure known as
conjugate gradient descent could prove beneficial and
requires further investigation. Three additional possible
areas of future study, that are described below, are the
inconsistency of long range contacts, the application of 5C
data and the application of high-resolution models.

Long range contacts
With the results of implementing our methodology pre-
sented, a discussion of a minor inconsistency and limita-
tion regarding our experiment is needed. Of which
regards the difference between long range and short
range interactions. As can be shown in the heat map
representation of the contact satisfactions in Fig. 7, a
larger amount of short range contact interactions are
satisfied than the amount of long range contact interac-
tions that are satisfied. Here short range interactions are
contacts between regions relatively close together, de-
fined by |i-j| < = 10 where i and j are the row and col-
umn index respectively of the heat map; and long range
interactions are contacts between regions relatively far
apart, defined by |i-j| > 10. The exact nature of this
phenomenon requires further investigation to determine
the cause and also to figure out possible solutions that
can bridge the gap between the number of short range
contacts satisfied compared to the number of long range
contacts satisfied.

Application of 5C data
Another possible area of future study involves utilizing
additional chromosome conformation capturing tech-
niques. Analogous to the Hi-C technique used to obtain
chromosomal contact data, another technique known as
carbon-copy chromosome conformation capture (5C)
has a similar function. This was tested by Baù et al. [6]
when they used such data to determine 3D structures of
chromosomes, specifically chromosome 16. We tested
the applicability of our methodology with 5C data rather
than Hi-C data by generating a model of chromosome
16 with the published 5C data and compared the results
with the generated model of Baù et al. [6]. The side-by-
side comparison of the visualized results, with our model
generated using the UCSF Chimera tool [13] show that
the two models are similar. However, additional testing
is required to ensure our methodology could work
equally well with 5C data. In addition, the testing of the
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Fig. 10 Comparison with MCMC5C. Bar graphs representing comparison of scores for the MCMC5C approach [5] and our approach, Gen3D. Bar
graph on top shows comparison of CS score, and bar graph on bottom shows comparison of NS score. Score percentage is represented in the
y-axis and the chromosome number is represented in the x-axis

Fig. 11 Comparison with MCMC5C of chromosome 19. Side by side comparison of visualized models of chromosome 19. The model on the left
is from the MCMC5C method [5] and the model on the right is from our Gen3D method
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applicability of other chromosome conformation cap-
turing techniques, such as 4C, would be beneficial and
provide insight into the versatility of our methodology.

High-resolution models
One last area of future study involves generating chromo-
some models with higher resolutions. We have performed
some initial analysis regarding constructing models with
higher resolutions, however more investigation is re-
quired. Our analysis consisted of generating models of
multiple chromosomes with resolutions of 100 K and
200 K, then comparing the results to the results from the
standard resolution of 1 MB. The results of such compari-
son revealed that using higher resolutions yields less
accurate results and larger running time required to build
the models. We suspect this is due to the following rea-
sons. First, since a higher resolutions means more units
per model, the number of iterations for all steps might be
too low, especially adaptation. We suspect additional iter-
ations will yield higher scores. Second, the growth tech-
nique fails for models with higher resolutions due to the
number of units; therefore spherical initial structure was
used. This resulted in less accurate models as Vendruscolo
et al. [8] suggests using growth for models with more than
200 units, which is not the case here. The visualization of
our analysis is presented in Fig. 12 which shows two visu-
alized models of chromosome 21 from the cancerous cell
input data. The generated model on top has a resolution
of 100 K and the model on bottom has a resolution of
200 K. Since our initial investigation demonstrated that
models with higher resolutions resulted in lower scores
and took more time, further investigating is needed to
help improve the applicability of high-resolution models
with our methodology.

Conclusions
Achieving accurate models of chromosomal structures
from intra-chromosomal contact data (interaction within
each chromosome) helps in determining the nature of the
structure of the entire genome, being the full set of chro-
mosomes. Knowing the nature of genome structures has
been proven to be a vital gateway in further understanding
of the nature of the entire genome, representing benefits
akin to knowledge of the genetic information itself. In
particular, such information can lead to further informa-
tion regarding genome processes and functions including
spatial gene regulation, transcription efficiency, genome
interpretation, function implication, disease diagnosis and
treatments, and drug design, all of which have potentially
crucial implications in the corresponding field. For
example, information of genome structures of disease-
prone organisms, such as viruses, can aid in diagnosis and
treatment of such diseases. These benefits have created a
need for accurate models of human chromosomes. Our

computational approach helps to address this need. In
addition, as 3D chromosome models can provide practi-
cality and value to the research community by contribut-
ing to research efforts pertaining to genome functions and
characteristics such as the key areas previously listed.
Therefore, our approach can directly aid the research
community as a reliable and efficient tool to achieve much
needed accurate chromosome models.
To conclude, our approach, known as Gen3D, has

been demonstrated to be an effective process for con-
structing 3D models of chromosomal structures. There-
fore, we believe that our computational methodology
will successfully provide a much-needed tool capable of
building 3D models of chromosomal structures, which
will provide insight into knowledge regarding human
genomes and chromosomes as well as shed some light
on further areas of study.
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Fig. 12 Visualization of chromosome 21 in higher resolutions.
Visualization of two generated models of chromosome 21 from the
cancerous cell data of Wang et al. [3]. Generated models are of higher
resolution than originally tested. Model on top has a resolution of
100 K and model on bottom has a resolution of 200 K
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