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Abstract

The spatial conformation of a genome plays an important role in the long-range regulation of genome-wide gene
expression and methylation, but has not been extensively studied due to lack of genome conformation data. The recently
developed chromosome conformation capturing techniques such as the Hi-C method empowered by next generation
sequencing can generate unbiased, large-scale, high-resolution chromosomal interaction (contact) data, providing an
unprecedented opportunity to investigate the spatial structure of a genome and its applications in gene regulation,
genomics, epigenetics, and cell biology. In this work, we conducted a comprehensive, large-scale computational analysis of
this new stream of genome conformation data generated for three different human leukemia cells or cell lines by the Hi-C
technique. We developed and applied a set of bioinformatics methods to reliably generate spatial chromosomal contacts
from high-throughput sequencing data and to effectively use them to study the properties of the genome structures in
one-dimension (1D) and two-dimension (2D). Our analysis demonstrates that Hi-C data can be effectively applied to study
tissue-specific genome conformation, chromosome-chromosome interaction, chromosomal translocations, and spatial
gene-gene interaction and regulation in a three-dimensional genome of primary tumor cells. Particularly, for the first time,
we constructed genome-scale spatial gene-gene interaction network, transcription factor binding site (TFBS) – TFBS
interaction network, and TFBS-gene interaction network from chromosomal contact information. Remarkably, all these
networks possess the properties of scale-free modular networks.
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Introduction

A genome of a cell is a complete collection of double-stranded

linear DNA sequences of a species. It contains protein coding

regions (i.e., gene), gene regulatory elements (e.g., promoter and

enhancer), and non-coding functional or nonfunctional regions

(e.g., microRNA and intron). The genome encodes all the genetic

information necessary for a cell to function throughout its life

cycle. The cell of a eukaryotic species forms a multi-granularity

genome structure (e.g., nucleosome, chromatin fiber, chromatin

cluster, chromosome, and genome) in order to compactly store a

very long genomic DNA sequence in its small nucleus. A

nucleosome is a basic unit consisting of ,145–147 base pairs of

DNA wrapped around a protein complex (histone octamer). Tens

of nucleosomes are further collapsed into a larger dense structural

unit – chromatin fiber – of several kilobase (Kb) pairs [1,2].

Multiple chromatin fibers form a large module of megabase pairs

(Mb) DNA, which may be referred to as domains, globules, gene

loci, or chromatin clusters in different contexts. A number of

chromatin clusters then fold into a large independent physical

structure – chromosome [3,4], which occupies a physical space in

nucleus often being referred to as chromosome territory [5,6]. One

or more chromosomes interact to constitute the dynamic three-

dimensional (3D) conformation of the entire genome of a cell.

Examination of the spatial conformation of a genome is essential

for understanding long-range gene-gene interaction, spatial gene

regulation, DNA methylation, and chromatin remodeling that

involve linearly distant genes and functional elements of several

kilobase or even megabase nucleotides away on a linear genome [5–

10]. In contrast to the extensive research on genome-wide gene

expression and DNA methylation in a linear genome facilitated by

whole genome sequencing, the detailed investigation of the spatial

conformation of a genome has just been enabled by several recently

invented chromosome conformation capturing methods (e.g., 3C,

4C, and 5C) that can interrogate genome structure at a large scale

[7,8]. Different from an early, but still widely used method,

fluorescence in-situ hybridization (FISH) [9] that can selectively

measure the physical distances between a number of genetic markers
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(e.g., a marked position on a chromosome), 3C [10], 4C [11], and 5C

[12] methods empowered by DNA sequencing techniques, have

determined chromosomal regions in spatial proximity (or contact)

within a pre-marked genomic region of up to a few Mb. More

recently, the Hi-C technique [13] empowered by next generation

sequencing was designed to determine both intra- and inter-

chromosomal contacts in an unbiased manner at the whole genome

scale. The Hi-C technique joins together the spatially close, but

linearly separated genome fragments by ligation, and then excises

the combined fragments off for DNA sequencing. The two parts of

the combined sequences are then mapped to a reference genome

(e.g., human genome in this work) in order to identify the genomic

regions or locations that are in spatial proximity – contact. The Hi-C

technique can determine chromosomal contacts with higher

resolution by increasing the depth and coverage of sequencing.

Thanks to the wide availability of next generation sequencing

facilities and the standard protocol of preparing Hi-C libraries, the

Hi-C technique is poised to be widely used to generate chromosomal

contact data for studying spatial genome conformation at either 2D

or 3D levels in order to elucidate its role in gene interaction, gene

regulation, and DNA methylation [14–16]. Accordingly, computa-

tional methods need to be developed to generate, analyze, and

model these new sources of data in a large-scale manner in order to

study the structural and functional properties of a genome in the

spatial context.

In this work, we generated hundreds of millions of Hi-C paired-

end sequence reads for three different human cells (RL follicular

lymphoma cell line, primary tumor B-cells from an acute

lymphoblastic leukemia patient, and MHH-CALL-4 B-cell acute

lymphoblastic leukemia cell line) using the Hi-C technique. An in-

house bioinformatics software pipeline was developed and applied to

map sequence reads to the human reference genome, producing a

large data set of high-quality and high-resolution chromosome

contacts. Our computational analysis on these data reveal some

interesting properties of human genome conformation, including

conformational conservation and variation of genomes of different

cells, intra- and inter-chromosomal interactions, aberrant chromo-

somal translocation, spatial gene clusters, spatial gene-gene inter-

actions, and spatial gene-regulatory-element interaction. Further-

more, we derived spatial interactions between functional elements

(genes, transcription factor binding sites) from the chromosomal

interaction data. The data were then used to generate chromo-

some-/genome-wide gene-gene interaction networks, transcription

factor binding site (TFBS) – TFBS networks, and gene-TFBS

networks. Remarkably, the connectivity in both networks shows the

hallmark features of scale-free networks, suggesting that spatial

interactions of gene-gene, gene-TFBS, and TFBS-TFBS in a

genome are far from random. These findings may lead to new

biological insights into spatial gene-gene interaction and regulation.

And in contrast to previous studies investigating the organizer role of

human CCCTC-binding factor [17] and the binding patterns of 45

human transcription factors [18], our networks provide a large-scale

study of gene and TFBS interactions at the chromosome/genome

level and reveal their scale-free interaction patterns. Our gene-gene,

gene-TFBS, and TFBS-TFBS networks may also provide a graphic

way of studying the functional relationship between interacted genes

and TFBS [19].

Results

Hi-C read mapping
We created Hi-C libraries for a case of primary human B-acute

lymphoblastic leukemia (B-ALL), the MHH-CALL-4 B-ALL cell

line (CALL4), and the follicular lymphoma cell-line (RL). These

libraries were sequenced using an Illumina HiSeq 2000. High-

quality paired-end reads of 39M, 79M, and 33M were obtained

for these cells, respectively. The quality distributions of 100–

120 bp reads are shown in Figures S1, S2, and S3. The read

number distributions and gene number distributions along selected

chromosomes are reported in Figure S4. The paired-end DNA-

reads of the normal human B-cell line (GM06990) (7M pair of

reads) were downloaded from Lieberman-Aiden etc [13] as a

reference benchmark to test our in-house read mapping method.

Paired-end reads for both the reference data and our own Hi-C

data were mapped to the human genome and the chromosomal

contact information was generated (see details in ‘‘Methods’’

section). On the reference data, 98.3% of the contacts generated

by our method were identical with the contacts produced in [13];

and 83.2% of contacts in [13] were also reproduced by our

method. This high consistency supported the validity of our

system. The reads that were mapped to multiple locations in the

genome were discarded. In terms of sequencing depth, on average,

each gene region in our Primary ALL, MHH-CALL-4, RL cell

lines has about 1.8, 2.8, and 1.5 mapped reads (Table S1), which

is much higher than 0.17 in [13] likely because of our higher level

of sequencing reads.

Intra-chromosomal contacts of different cells/cell lines
We constructed the intra-chromosomal contact matrices with

and without normalization for the normal B-cell, primary B-ALL

cells, MHH-CALL-4 cell line, and lymphoma RL cell line. The

contact matrices without normalization were visualized as heat

maps (Figure 1A–D for chromosome 14, Fig S5, S6, S7, S8,
S9, S10, S11, and S12 for all chromosomes with and without

normalization). In a heat map matrix (M), a chromosome is

divided into a number of 1 Mb regions, where the value of a cell

Mi,j is the number of contacts between regions i, and j. Although

1Mb resolution contact matrices were generated here for

comparison with the reference data [13], higher resolution

matrices/maps (e.g. 10 Kb resolution) can also be generated for

our cell samples or at least some chromosomal regions since many

more reads were collected. In the heat maps of visualizing contact

matrices, the intensity of color at position i, j is set proportional to

the contact frequency between two regions i, j. The heat maps we

constructed for the reference normal B-cell (Figure 1A) are almost

identical to those in [13], supporting the validity of our method. As

in [13], in order to sharpen contact patterns, we generated

Pearson’s correlation maps (C) from initial contact maps

(Figure 1E–H), in which the value of a cell Ci, j was equal to

the Pearson’s correlation between the ith and jth rows in the

original contact matrix (M). The assumption is that if two regions

are spatially close, they should share similar contact neighbors,

thus have a higher correlation between their contact profiles.

Indeed, the correlation maps clearly reveal the plaid contact

patterns likely corresponding to open/closed euchromatin and

heterochromatin compartments than in the initial contact matrices

by reducing noise in the data. The results suggest that the

correlation maps of the normal B-cell, primary B-ALL, and

CALL4 (B-ALL cell line) (Figure 1E–G) are more similar to each

other than to the RL cell line (follicular lymphoma cell line)

(Figure 1H), even though there are also some differences in the

maps of normal and malignant B-cells (Figure 1E–F). To reveal

the differences in contact profiles between healthy and malignant

B-cells and between different cell types, we constructed difference

matrices showing the absolute difference between their correlation

maps. Figure 1I–K illustrates the differences in the correlation

maps of chromosome 14 between normal B-cells and the primary

B-ALL cells, MHH-CALL-4 cell line, and lymphoma RL cell line,
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respectively. Figure 1L shows the difference between two

malignant cell lines MHH-CALL-4 and follicular lymphoma

RL. Higher color intensity indicates larger absolute difference and

white indicates the same. It seems that the difference between the

normal and malignant B-cells is more obvious than that between

the other pairs. The Pearson’s correlations between the vectors of

intra-chromosomal contact numbers of 23 pairs of chromosomes

of these four samples (Fig. S13) also show similar relationships.

Fig. S14 shows the significance analysis of intra-chromosomal

contact matrices.

In contrast, we generated another set of contact matrices

(Figure 2) with normalization. Figures 2A–D denote the raw

contact matrices derived from the reads mapped to the unique

locations in the genome. Figures 2E–H visualize the contact

matrices generated by further normalizing the raw contact

matrices using Sequential Component Normalization method

(SCN) [19]. Furthermore, in order to emphasize long-range

interactions as in [20], we first use a genomic sequential-distance-

based normalization method [19] to normalize the raw contact

maps and then apply the SCN method to them to generated the

contact maps visualized in Figure 2I–L, which deemphasizes the

large number local contacts in the diagonal regions in the contact

maps. Figure 2M–P show the correlation maps based on the

normalized contact maps in Figure 2E–H. Compared with the

correlation maps generated based on raw contact numbers in

Figure 1A–D, the contact normalization indeed makes some

parts of the patterns clearer while keeping the overall contact

profile similar. Figures 2Q–T show the differences between

healthy and malignant correlation maps that were generated from

the normalized contact maps in Figure 2A–D. The dark red

indicates the sign of correlations was changed (i.e., from positive

correlation value to negative or vice versa) in two cell types. Light

red denotes a change in correlation value without sign change.

White indicates correlation is not changed. It is shown regions with

sign changes from one cell type to another tend to be adjacent or

form some rectangular patterns. Further studies are needed to

explain their functional and structural implication.

Figure 1. The contact matrices, correlation matrices, and difference matrices of chromosome 14. This figure illustrates the original
contact matrices, correlation matrices, and difference matrices of chromosome 14 for the normal human B-cell, human acute lymphoblastic leukemia
B-cell, human MHH-CALL-4 B-ALL cell line, and human lymphoma RL cell-line. Heat maps (A-D) visualize the original number of contacts within the
chromosome, (E-H) the Pearson’s correlation matrices generated from the original contact matrices, and (I-L) the absolute difference matrices
generated from the correlation matrices.
doi:10.1371/journal.pone.0058793.g001
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Figure 2. The contact matrices, correlation matrices, and difference matrices of chromosome 14 after applying normalization. (A–D)
denote the contact matrices after removing reads mapped to multiple locations on the genome, (E-H) the contact matrices after applying SCN
normalization method to the maps in (A–D), (I–L) the contact matrices after applying both genomic sequential distance based method and SCN to
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Inter-chromosomal contacts and chromosomal
translocations

Inter-chromosomal contacts exist between two spatially close

regions from two different chromosomes. We generated normal-

ized inter-chromosomal contact matrices for all pairs of chromo-

somes for all cellular samples (see Fig. S15 for an example

between chromosome 11 and 14 for Normal B-Cell Line). In

comparison with plaid patterns in intra-chromosomal contact

maps, inter-chromosomal contacts are much less frequent and

more uniformly distributed in all but one case. The unusually

dense inter-chromosomal contacts were found between chromo-

somes 11 and 14 for the primary B-ALL cells (data not shown)

suggesting the telomeric end of chromosome 11 is very spatially

close to chromosome 14 and a part of chromosome 14 is unusually

close to chromosome 11. The most plausible explanation for this is

that a reciprocal translocation of chromosome 11 and chromo-

some 14 was present because the unusually dense ‘‘inter-

’’chromosomal contacts actually were ‘‘intra-’’chromosomal con-

tacts caused by translocation. By zooming in on the inter-

chromosomal contact map from 1Mb resolution to 10Kb, the

boundaries of the translocation between chromosomes 11 and 14

were identified computationally by detecting the locations with a

sudden and drastic increase of inter-chromosomal contacts

(Fig. S16). The translocation was later confirmed by an indepen-

dent oligonucleotide tiling array experiment specialized at

detecting chromosome rearrangements and was shown to be a

cancer causing factor (manuscript in preparation). Based on the

translocation, our method was able to reconstruct the translocated

chromosomes 11 and 14 (t;11:14), and to estimate their inter-

chromosomal contacts (Fig. S17).

In order to study the genome-wide inter-chromosomal contact

profiles between healthy and malignant cells and between different

cell types, we calculated the ratio between the observed and the

expected number of contacts for all pairs of human chromosomes

for the normal B-cell, primary B-ALL cells, the MHH-CALL-4

cell line, and the follicular lymphoma RL cell-line. The higher

ratios indicate more enrichment of inter-chromosomal contacts

between two chromosomes. Our genome-wide inter-chromosomal

contact profile generated on normal B-cell is highly similar to the

one in [13], in which small gene-rich chromosomes have more

interactions than large gene-sparse chromosomes. While this is still

largely true for primary malignant B-ALL cells and the MHH-

CALL-4 cell line (data not shown), unusual dense inter-chromo-

somal contacts were also found occurring in large or small

chromosomes in these cells/cell lines. For example, in comparison

with the normal B-cells, more contacts were found between

chromosome 1 and chromosome 19, chromosome 11 and 14 in

primary B-ALL tumor cells (Figure 3B); chromosome 5 and

chromosome 6, chromosome 3 and chromosome 11, chromosome

10 and 17, chromosome 9 and chromosome 19, chromosome 16

and chromosome 21 in the MHH-CALL-4 cell line (Figure 3C).

Particularly, there are unexpectedly more contacts between

chromosome 2 and chromosome 8, chromosome 17 and

chromosome 20, chromosome 13 and chromosome 18 in the

RL-cell line (Figure 3D) compared with normal B-cells.

Moreover, in comparison with the normal B-cells, the small and

gene-rich chromosomes appear to have fewer contacts in the

lymphoma sample (Figure 3D). The Pearson’s correlations

between total numbers of inter-chromosomal contacts of four

cells/cell lines are reported (Fig. S18). The difference in inter-

chromosomal interaction patterns may shed light on the biology of

different cell types and potential causes of diseases.

In addition to the conservation and variation in inter-

chromosomal interactions described above, one remarkable

conserved interaction among all four cells/cell lines is that one

region [18Mb, 19Mb] in chromosome 14 always has the

maximum number of inter-chromosomal contacts with other

chromosomes. The most enriched gene function of the genes in

this region is ubiquitin-protein ligase activity (Gene Ontology term,

GO:0004842), but the importance of this function awaits further

investigation.

Furthermore, in order to illustrate the importance of removing

the noise in the data, we calculated the proportion of inter- and

intra-chromosome interactions before and after using the SCN

normalization procedure [21] (see Fig. S19). The number of

inter- and intra-chromosome interactions before using the SCN

normalization procedure is calculated by counting the total

number of them from contact file directly. The number of inter-

and intra-chromosome interactions after using the SCN normal-

ization procedure is calculated from the normalized inter- and

intra- contact matrices. It is shown that the proportion of inter-

chromosome interactions is reduced after using the SCN

normalization procedure.

Chromosome-/genome-wide spatial gene-gene
interaction networks

We chose the HoxA gene cluster [14] in chromosome 7 (location

27,095,000 – 27,215,000) to compare interaction patterns of

different cell lines in greater detail (Fig. S20). Fig. S20 shows the

non-normalized absolute number of contacts for HoxA genes,

which may contain noise partially due to the potential low reads

coverage in a small genome region. Fig. S21 shows the reads

mapped to this cluster visualized by the UCSC Genome Browser

[22]. The large amount of Hi-C chromosomal interaction data

provided an unprecedented opportunity to study spatial gene-gene

interactions. To the best of our knowledge, for the first time, we

constructed chromosome-/genome-wide spatial gene-gene inter-

action networks for the human genome. In these networks, each

node represents a gene; and an edge is used to connect two genes if

there is at least one Hi-C read showing they are in spatial contact.

The weight of the edge is the number of observed contacts

between two genes. Figure 4A illustrates the intra-chromosomal

gene-gene interaction network of the genes on chromosome 14 for

the MHH-CALL-4 cell line. The isolated genes without any

spatial contact with other genes and the genes with types of

‘‘PSEUDO’’, ‘‘RNA’’, ‘‘CDS’’, and ‘‘UTR’’ were not included.

We analyzed a number of properties of the network, including

node degree distribution (Figure 4B), shortest path length

distribution (Figure 4C), average clustering coefficient distribu-

tion (Figure 4D), closeness centrality (Figure 4E), stress

distribution (Figure 4F), and topological coefficients

(Figure 4G). The linear relationship in the log-log plot of node-

degree distribution (Figure 4B) shows that the gene-gene

interaction network is very likely a scale-free network, like human

social networks, world wide web, protein-protein interaction

networks [23–27], and protein domain co-occurrence networks

[28], where most nodes have few connections and some hub nodes

have many connections. For example, a hub gene (GeneID:9369)

maps in (A–D), (M–P) the correlation matrices based on maps in E-H, and (Q–T) the difference matrices of between correlation matrices in M-P of
normal and malignant samples.
doi:10.1371/journal.pone.0058793.g002
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has interactions with 111 other genes in chromosome 14. The

gene-gene interaction networks of several chromosomes of other

cells/cell lines that we investigated also possess the same scale-free

property (data not shown). Figure 4C further depicts the small-

world phenomenon [23] associated with a scale-free network, i.e.

most of genes are three or four steps away from each other

through the shortest path between them. Figure 4D shows that

the hub nodes with many interactions tend to have small clustering

coefficients, whereas nodes with fewer connections tend to cluster

with others to form densely connected sub-graphs. These clusters

are connected through hub nodes. We also found that the nodes

with smaller degree have the less average closeness centrality that

measures how fast information can be spread to other reachable

nodes, whereas hub nodes usually have a higher closeness

centrality, which might suggest their importance in maintaining

the connectivity of the networks (Figure 4E).

The stress value of a node is the number of shortest paths

passing through it. A higher stress value may imply a more

important role of the node in the network. A small portion of

nodes have a very high or very low stress value and most nodes

have a middle stress value (Figure 4F), indicating that a small

number of nodes may be extremely important to the network. The

topological coefficient of a node measures the extent to which it

shares neighbors with others. Figure 4G shows that hub nodes

usually tend not to share neighbors. Instead, they serve as a center

of a group of nodes (i.e. a module or clique), and the modules are

connected through their hub nodes indirectly.

The inter chromosome gene-gene networks are generated for

comparison, and we also find out the scale free network properties

for them (Fig. S22, S23, S24, and S25 shows an example of

inter chromosome gene-gene networks between chromosome 11

and 14 for Primary B-ALL).

Figure 3. The characteristics of inter-chromosomal contacts. This figure shows the observed numbers of inter-chromosomal contacts divided
by the expected numbers of inter-chromosomal contacts between all pairs of human chromosomes.
doi:10.1371/journal.pone.0058793.g003
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Interaction networks of transcription factor binding sites
(TFBS)

In order to study interactions between TFBS that play an

important role in spatial gene regulation, we constructed

interaction networks of transcription factor binding sites (TFBS)

from the Hi-C data. The whole-genome TFBS-TFBS interaction

network for the MHH-CALL-4 cell line is shown in Fig. S26.

Like spatial gene-gene interaction networks, the TFBS-TFBS

interaction networks also have the hallmark features of scale-free

networks (Fig. S27, S28, S29, and S30). This de novo network

may help study how spatially distal genes may be brought together

to share the same transcription machinery. For comparison, we

also generate one normalized TFBS-TFBS interaction networks

between chromosomal 4 and chromosomal 4 of the MHH-CALL-

4 cell line (Fig. S31, S32, and S33).

Interaction networks of transcription factor binding sites
and genes

To investigate interactions among TFBS and genes, we

constructed networks showing TFBS-TFBS-gene interaction

relationship for chromosome 14 of the MHH-CALL-4 cell line

(Fig. S34). The statistical properties of TFBS-TFBS-gene inter-

action network suggest it is a scale-free network (Fig. S35, S36,
S37, and S38) that is very different from a random network. One

TFBS on chromosome 14 that has a lot of contacts with a gene

(GeneID: 145508) along its location was visualized by the UCSC

Genome Browser (Fig. S39).

Discussion

We developed a bioinformatics pipeline to study the properties

of human genome conformation and spatial gene interaction and

regulation networks by analyzing Hi-C data. Our computational

method can reliably generate intra- and inter-chromosomal

contact matrices according to a standard Hi-C benchmark [13].

The chromosomal contact matrices built on the Hi-C data of three

malignant cells/cell lines (B-ALL CALL-4, and RL) and a normal

B-cell line demonstrates both the conservation in the genome

conformation across different cells and the cell-type-specific or

cell-state-(i.e. disease versus normal)-specific variation. For in-

stance, smaller chromosomes had more contacts than expected

compared with large chromosomes in the normal B-cell, but the

pattern became less obvious in the malignant B-cells/cell lines,

especially in the follicular lymphoma RL cell line. The conforma-

tional difference between different cell lines may be used to help

understand 3D nuclear conformation and disease associations in

different malignancies.

Furthermore, our computational analysis on high-resolution

(e.g. 10Kb) inter-chromosomal contact matrix built on a case of

primary B-ALL successfully identified a cancer-related chromo-

somal translocation between chromosomes 11 and 14 based on

abnormal intensive interactions between the two ends of the two

chromosomes. The boundaries of the translocation were accu-

rately detected and then used to construct the in silico translocated

chromosomes. This is probably one of the first few examples that

the Hi-C method can be used to accurately pinpoint and re-

construct clinically important chromosomal translocations.

In addition to studying the properties of the genome and

chromosome conformation as a whole, we also developed methods

to use Hi-C data to investigate both the gene-gene interactions in

the HoxA gene cluster on chromosome 11 and the chromosome-

wide spatial gene-gene interactions. To the best of our knowledge,

this is the first demonstration of chromosome-/genome-wide

spatial interaction networks between genes and transcription-

factor-binding-sites (TFBS). Our experiments show that these gene

interaction and regulation networks have the properties of

modular scale-free networks similar to other biological networks.

These discoveries shed new light on the study of 3D nuclear gene

interactions and regulation.

Methods

Hi-C library preparation and sequencing of the primary
human acute lymphoblastic leukemia B-cell (B-ALL),
MHH-CALL-4 B-ALL cell line (CALL4), and lymphoma RL
cell-line (RL)

The primary ALL patient sample was obtained from the Ellis

Fischel Cancer Center (Columbia, MO) following diagnostic

Figure 4. The spatial gene-gene interaction networks and the analysis of its properties. The results were based on the contact data with
reads that were mapped to multiple locations on the genome removed. (A) The gene-gene interaction network of genes residing in chromosome 14
for the CALL-4 cell line. (B) The distribution of node degrees. (C) The histogram of shortest path lengths. (D) The plot of average clustering coefficient
against of the degree (the number of neighbors) of a node. (E) The plot of closeness centralities against the degree of a node. (F) The stress
distribution. (G) The plot of topological coefficients against the degree of a node. The network and its properties were visualized and analyzed by
Cytoscape [32].
doi:10.1371/journal.pone.0058793.g004
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evaluation and in compliance with the local Institutional Review

Board. Human cell lines RL and MHH-CALL4 were maintained

at 37uC with 5% CO2. MHH-CALL4 is a human B cell precursor

leukemia cell line established from the peripheral blood of a 10-

year-old Caucasian boy with acute lymphoblastic leukemia at

diagnosis in 1993 [29].

Library preparation was adapted from [13]. Briefly, cells from a

patient with acute lymphoblastic leukemia, a lymphoma cell line

(RL), and an acute lymphoblastic leukemia cell line (MHH-

CALL4) were cross linked by adding 1.25mL of 37% formalde-

hyde to a final concentration of 1%. After a 10 minute incubation,

2.5 mL of 2.5M glycine was added to stop the reaction. Once

cross-linked, the cells were lysed and the chromatin was digested

by adding 400 units of HindIII and incubating overnight at 37uC
with rotation. The ends of the fragmented DNA were repaired by

adding 1.5 mL 10 mM dATP, 1.5 mL 10 mM dGTP, 1.5 mL

10 mM dTTP, 37.5 mL 0.4 mM biotin-14-dCTP, and 10 mL

5 units/mL Klenow and incubating at 37oC for 45 minutes. For

dilute blunt-end ligation 7.61 mL of ligation mix (745 mL of 10%

Triton X-100, 745 mL 10x ligation buffer (500 mM Tris-HCl

pH7 5, 100 mM MgCl2, 100 mM DTT), 80 mL 10 mg/mL BSA,

80 mL 100 mM ATP and 5.96 of water) was added and incubated

for 6 hours in a circulating water bath at 16uC.This process

marked the DNA with biotin and an NheI recognition sequence

was formed at the ligation junction. The DNA was then purified

by degrading the remaining proteins with proteinase K and

performing phenol-chloroform extractions. The detailed descrip-

tion of the entire Hi-C procedure used in our experiment is

described in the supplemental document Text S1.

To verify ligation efficiency, PCR was performed using quality

control primers (Lieberman et al.). The PCR products were then

digested with HindIII or NheI. As in [13], we detected an

approximate 70% ligation efficiency in our Hi-C libraries.

Fig. S40 and S41 show the ligation efficiency and PCR digest

control of a few cell samples.

After the ligation efficiency was validated, biotin was removed

from unligated DNA fragments using T4 DNA polymerase. The

DNA was then sheared to a size of 300–500 base pairs and

streptavidin beads were used to collect the remaining biotin

labeled DNA fragments. The three Hi-C libraries were then

subjected to paired-end high-throughput sequencing on the

Illumina HiSeq 2000 by core facilities at the University of

Missouri-Columbia.

Mapping Hi-C sequence reads to the reference genome
The sequencing generated millions of pair-end reads for each

sample above. Each read end has a length of 100 or 120

nucleotides (Table S1 and S2). The Hi-C sequence reads of the

normal B-cell line were downloaded from [13] to test and ensure

the correctness of our methods. The sequence reads of the four cell

lines were mapped to the human genome according to the

protocol illustrated in Fig. S42. Briefly speaking, software Maq

was used to map each read-pair to the reference human genomes

(NCBI build 36.3), where parameter ‘‘sum of mismatching base

qualities (-e)’’ controlling the tolerance of mismatches was set to

150 in most experiments. Maq outputs the base pair positions in

the reference genomes where each DNA read is mapped to. The

mapped positions were analyzed by our method to generate

chromosomal contacts. Although one read may be mapped to

multiple locations due to inexact match of Maq, only the reads

mapped to a unique location were kept for generating the contacts.

This strict strategy of handling multiple mapping locations

reduced noise in the data and ensured the high quality of contacts.

Moreover, we only kept the reads-pairs whose two ends are either

mapped to two different chromosomes or . = 2K bp away on the

same chromosome (Fig. S42). As an example, the reads mapped

to the HoxA gene cluster region in chromosome 7 were visualized

in Fig. S21.

Normalization for Hi-C contact maps and gene and
transcription factor binding sites networks

There are various bias and background noise in Hi-C raw data,

such as the bias of fragments sizes, GC content and circularization

steps. So it is important to normalize the Hi-C data before

analyzing them [15,20,30]. In this paper, the Sequential Compo-

nent Normalization (SCN) [20] normalization procedure was used

to normalize both intra and inter chromosome contact maps as

follows. For a contact matrix, each column is considered as a

vector and each element in the vector is divided by its Euclidean

Norm. And then, each row of the contact matrix is normalized in

the same way. The two steps of the procedure above are repeated

until the contact matrix becomes symmetric. Since the SCN

normalization tends to give an equal weight to each region in the

contact map, generally regions with very low number of reads are

removed before the SCN normalization is applied. Figures S43

demonstrates the distribution of Euclidean Norms of each region

of both inter and intra chromosome contact maps for MHH-

CALL-4. For intra chromosome contact maps, another step is

added to take into account the effect of the genomic distance, that

is the contact number of two regions in the intra contact matrix is

divided by the average contact number of any two regions which

have the same genomic distance as the two regions. For the

networks of gene and transcription factor binding sites, we set a

sequence-depth-dependent threshold to filter out interactions with

low contact numbers so that the same type of networks of all the

four cell/cell lines have the same number of edges (i.e.

interactions).

Generating intra- and inter-chromosomal contact
matrices

Intra-chromosomal and inter-chromosomal contact matrices

were generated by counting numbers of mapped read contacts

falling into each pair of equal-length regions/segments of

chromosome(s). The length of the segment (i.e. the resolution of

a contact matrix) can be adjusted according to research goals. We

used 1Mb resolution for comparing interaction patterns between

different cell lines, but used much smaller resolutions, 0.1 Mb and

0.01 Mb, in order to identify the boundaries of chromosomal

translocations. Similarly as in [13], the number of short-range

contacts is much larger than long-range ones. In order to make the

long-range contacts easy to observe in the visualized heat maps of

contact matrices, we set a maximum cap (e.g. 50) on the number

of contacts between two regions in contact matrices for

visualization.

We normalized the chromosomal contact matrices in order to

(1) discover the statistically enriched and depleted regions within

one contact matrix and (2) compare two contact matrices to

recognize the differences in their interaction patterns. For

example, by comparing the normalized inter-chromosomal

contact matrices of the healthy and Leukemia cell samples, we

discovered the translocation between chromosome 11 and 14 in

the Leukemia cell line. A variety of normalization methods were

tested, including x/avg, (x-min)/max, and (x-mean)/sd, where x, max,

min, mean, and sd are the number of contacts between two regions i

and j, maximum, minimum, mean, and standard deviation of

contact numbers in the matrix, respectively. The intra-chromo-

somal heat maps of the Primary ALL, MHH-CALL-4, RL, and
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healthy B cell lines can be found at Fig. S5, S6, S7, S8, S9, S10,
S11, and S12. The heat maps were generated using the

‘‘heatmap.2’’ package in R.

Statistical significance analysis of chromosomal contact
matrix

To infer the statistical significance of the number of contacts, we

assumed that contact values excluding local contacts on the

diagonal line in a contact matrix follow a Poisson distribution.

Each value in the statistical significance matrices is the probability

of observing a higher contact number for a pair of locations by

chance. The smaller probability value in the significance matrix

indicates the higher statistical significance. Fig. S14 shows the

significance matrices of the three malignant cell samples.

Construction of Pearson’s correlation matrix from
chromosomal contact matrix

The correlation matrices were generated based on the contact

matrices mentioned above. The value Ci, j of a cell in a correlation

matrix is the Pearson correlation between the values in the ith and

jth rows in the contact matrix containing absolute contact numbers

between region i and j. If the ith and jth regions are in contact,

they likely share similar contact partners, leading to a higher

correlation. The Pearson’s correlation matrices can effectively

reduce the noise in contact data to amplify the plaid contact

patterns corresponding to open and closed chromatin conforma-

tions. The contact correlation matrices were also used to discern

the genome conformation difference between different cell lines.

The difference matrix between two correlation matrices C1 and C2

equals to |C1 – C2|, which can be visualized as heat maps to show

differences in chromosomal conformations.

Calculation of observed/expected numbers of contacts
between all pairs of chromosomes

We generated the observed/expected number of inter-chromo-

somal contacts between each pair of chromosomes for all four cell

lines. The contact numbers between 23 pairs of chromosomes

provide a global view that can be used to distinguish conservation

and variation in genome conformation between different cell

samples as shown in Figure 3. As in [13] , the expected number of

contacts between chromosome i and j was calculated by:

Ei,j~Ri|Rj|NINTER,

where Ri and Rj are the fractions of inter-chromosomal reads

associated with i and j, respectively, and NINTER is the total

number of inter-chromosomal reads for a cell sample. The actual

observed number of inter-chromosomal contacts between chro-

mosomes i and j divided by the expected number Ei,j indicates the

enrichment or depletion of inter-chromosomal contacts between

them.

Construction of gene-gene interaction networks from Hi-
C chromosomal contact data

The gene definitions of the human genome (build 36.3) were

downloaded from the NCBI website. We only kept the ‘‘GENE’’

entries excluding the other types including ‘‘PSEUDO’’, ‘‘RNA’’,

‘‘CDS’’, and ‘‘UTR’’. A gene is denoted by a node/vertex in the

gene-gene interaction network that represents all the spatial gene-

gene interactions in a chromosome or a genome. An edge between

two nodes is added if the number of Hi-C contacts between the

two genes is higher than the contact threshold. Different contact

thresholds are chosen for each of the four cell lines’ gene-gene

interaction networks in order to make them have equal number of

edges. Figure 4 shows the intra-chromosomal gene-gene interac-

tion network and its properties (node degree distributions, shortest

path length distribution, average clustering coefficient distribution,

closeness centrality, stress distribution, and topological coefficients)

for the chromosome 14 of the CALL-4 cell line. The degree of a

node is the number of edges linked to it. The node degree

distribution depicts the number of nodes having various degree

values. The shortest path length distribution indicates the number

of node pairs who have a shortest path k between them, k = 1, 2,

3…. The clustering coefficient of a node n is calculated by:

Cn~
2Sn

Kn(Kn{1)
,

where Sn is the number of edges among immediate (one edge

away) neighbors of node n, and Kn is the number of immediate

neighbors of the node n. Clustering coefficient is between 0 and 1

indicating the tendency of immediate neighboring nodes to be

clustered. Average clustering coefficient is calculated by averaging

the clustering coefficients of all nodes in the network.

The closeness centrality Cc(n) of a node n is calculated as:

Cc(n)~
1

avg(L(n,m))
,

where L(n,m) is the length of the shortest path between the nodes

n and any other node m. Closeness centrality of a node is between

0 and 1 measuring how fast information can be broadcasted from

one node to other reachable nodes. Isolated nodes having a

closeness centrality 0 were not considered in Figure 4. The stress

of a node n is the number of shortest paths traversing through node

n; and the stress distribution indicates the number of nodes with

specific stress values. The stress values are grouped into bins whose

sizes are factor of 10, i.e., 0f g, 1,10½ Þ, 10,100½ Þ…. The topological

coefficient Tn of a node n is calculated as:

Tn~
avg(S(n,m))

g(n)
,

where m is a node that shares at least one neighbor with node n

or there is a direct link between node m and node n, function

S(n,m) returns the number of neighbors shared between node m

and node n, with 1 added if there is a direct link between node m

and node n, and g(n) is the number of immediate neighbors node

n. The topological coefficient of a node measures the extent to

which a node shares neighbors with other nodes. The topological

coefficient of a node having zero or one neighbor is assigned to 0.

Construction of interaction network of transcription
factor binding sites (TFBS)

The definitions and coordinates of transcription factor binding

sites were downloaded from Yale TFBS [31], which were

identified by ChiP-seq experiments. In the TFBS networks, a

node denotes a TFBS. Two TFBS nodes are connected by an edge

if the Hi-C contacts between them is higher than the contact

threshold. The sequence-depth-dependent contact threshold is set

to make the number of edges of networks of all four cell/cell lines

equal. The weight of the edge is the number of Hi-C contacts

between the two nodes. We generated a genome-wide TFBS-
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TFBS interaction network including both intra- and inter-

chromosomal contacts of all 23 pairs of chromosomes.

Construction of interaction networks of transcription
factor binding sites (TFBS) and genes

Based on the definitions of TFBS downloaded from Yale TFBS

[31] and the NCBI gene definitions, we constructed the TFBS-

gene interaction networks from the Hi-C contact data using the

same approach described above.

Supporting Information

Figure S1 The distribution of the sequencing qualities
(Solexa-scale) of paired-end reads of the two malignant
primary ALL B-cell data sets (i.e. quality scores V.S.
nucleotide positions). The sequencing quality score at a

position is calculated as Qsolexa~{10log10

p

1{p
, where p is the

probability of a sequencing error at the position. A score 30 means

the probability of a sequencing error at the position is , 0.001. A

score 20 or above may be considered acceptable. The plots show

the median (the black curve), 1st and 91st percentiles, 2nd and 3rd

quartiles from positions 1 to 120 in the reads data.

(JPG)

Figure S2 The distribution of the sequencing qualities
of paired-end reads of the two malignant MHH-CALL-4
cell line data sets.

(JPG)

Figure S3 The distribution of the sequencing qualities
of paired-end reads of the two malignant lymphoma RL
cell line data sets.

(JPG)

Figure S4 The plots of contact numbers against regions
of chromosome 7, 11 and 14 of four cell samples and the
plots of gene numbers against regions of chromosome 7,
11 and 14. The X-axis in Plots A-L denotes chromosomal region

index at resolution 1Mb and the Y-axis denotes the number of

intra- and inter-chromosomal contacts in each region. An inter-

chromosomal contact is a spatial contact between two different

chromosomes, and an intra-chromosomal contact a contact within

the same chromosome. A, B and C are the plots of chromosomes

7, 11, and 14 for the MHH-CALL-4 cell line respectively, D, E

and F for the RL cell line, G, H and I for the normal B-Cell, and J,

K and L for the Primary B-ALL cell. The plots show that the

number of contacts generated from the sequence data is not evenly

distributed along the chromosomes. The extra M, N and O plots

show the number of genes in each region against the regions of

chromosome 7, 11 and 14 separately.

(JPG)

Figure S5 The intra-chromosomal contact heat maps
for all chromosomes of the primary ALL B-cell. Interested

readers may contact us for images with higher resolution and for

contact matrix data.

(JPG)

Figure S6 The intra-chromosomal contact heat maps
normalized by using SCN procedure for all chromosomes
of the primary ALL B-cell. Interested readers may contact us for

images with higher resolution and for contact matrix data.

(JPG)

Figure S7 The intra-chromosomal contact heat maps
for all chromosomes of the MHH-CALL-4 cell line.

Interested readers may contact us for images with higher

resolution and for contact matrix data.

(JPG)

Figure S8 The intra-chromosomal contact heat maps
normalized by using SCN procedure for all chromo-
somes of the MHH-CALL-4 cell line. Interested readers may

contact us for images with higher resolution and for contact matrix

data.

(JPG)

Figure S9 The intra-chromosomal contact heat maps
for all chromosomes of the RL cell line. Interested readers

may contact us for images with higher resolution and for contact

matrix data.

(JPG)

Figure S10 The intra-chromosomal contact heat maps
by using SCN procedure for all chromosomes of the RL
cell line. Interested readers may contact us for images with

higher resolution and for contact matrix data.

(JPG)

Figure S11 The intra-chromosomal contact heat maps
for all chromosomes for the normal B-cell line. Sequence

reads data were downloaded from Lieberman-Aiden etc [13].

Mapping and construction of contact maps were carried out by

our pipeline.

(JPG)

Figure S12 The intra-chromosomal contact heat maps
by using SCN procedure for all chromosomes for the
normal B-cell line. Sequence reads data were downloaded from

Lieberman-Aiden etc [13]. Mapping and construction of contact

maps were carried out by our pipeline.

(JPG)

Figure S13 The Pearson’s correlation matrix for intra-
chromosomal contact numbers between the normal B
cell, primary ALL B-cell, MHH-CALL-4 cell line, and RL
cell line. For each cell, the number of intra-chromosomal

contacts for each of 23 pairs of chromosomes was calculated and

was put into a vector. Thus, each cell sample has one intra-

chromosomal contact vector. The matrix below shows the

Pearson’s correlation between each pairs of vectors of two cell

samples.

(JPG)

Figure S14 Contact significance analysis of selected
chromosomes. In order to check if the number of contacts

between two specific chromosome regions is significantly large, we

calculated the significance score (i.e. the probability of receiving

this number of contacts or more) in each cell of an intra-

chromosome contact matrix at 1Mb resolution, assuming the

background distribution of contact numbers follows the Poisson

distribution. The parameter (lamda: mean contact number) of the

background distribution was set to the average of number of

contacts in the matrix excluding contacts within the same region

(i.e. diagonal line in a matrix). Sub-figures A, B, C and D illustrate

the contact significant scores of the intra-chromosomal contract

matrices of chromosome 7 of the MHH-CALL-4 cell line, RL cell

line, normal B-cell and the Primary B-ALL cell, respectively. Sub-

figures E, F, G and H depict the significance scores of intra-

chromosomal contact matrices of chromosome 14 of the MHH-

CALL-4 cell line, RL-cell line, normal B-cell line and the primary

B-ALL cell, respectively. Darker red indicates higher significant

score.

(JPG)
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Figure S15 The inter-chromosome contact matrix be-
tween chromosome 11 and 14 of Normal B-Cell Line.

(JPG)

Figure S16 The method of calculating the corrected
inter-chromosomal contact matrix of translocated chro-
mosomes. (A) Division of the corrected inter-chromosomal

contact matrix between chromosomes 11 and 14 into three regions

to be reconstructed separately. Region A contains the contacts

between non-translocated segments in chromosome 11 (i.e. 11(c)

and 11(d) in (B)) and non-translocated segments in chromosome

14 (i.e. 14(c) and 14(d) in (B)). Region B contains the contacts

between translocated segments in chromosome 11 (i.e. 11(b) in (B))

and translocated segments in chromosome 14 (i.e. 14(a) in (B)).

Region C contains the contacts between non-translocated

segments in chromosome 11 (i.e. 11(c) and 11(d) in (B)) and

translocated segments in chromosome 14 (i.e. 14(a) in (B)). Region

D contains the contacts between non-translocated segments in

chromosome 14 and translocation segment in chromosome 11.

For the contacts in regions A and B, we divided the original

contact numbers by 2 in order to estimate the inter-chromosome

contacts. For region C, we normalized the value of each cell Cij =

max (0, Cij – average num of row i in region A). For region D, we

normalized the value of each cell Dij = max(0, Dij – average num

of column j in region A).

(JPG)

Figure S17 The corrected inter-chromosomal contact
map between translocated chromosomes 11 and 14 for
the primary ALL B-cell. The method of calculating it can be

found in Figure S13.

(JPG)

Figure S18 The Pearson’s correlation matrix for inter-
chromosomal contact numbers between the normal B
cell, primary ALL B-cell, MHH-CALL-4 cell line, and RL
cell line. For each cell, the number of inter-chromosomal

contacts between chromosomes were calculated and put into a

vector. Thus, each cell has one vector to represent all its inter-

chromosomal contact numbers. The matrix below shows the

Pearson’s correlation between each pairs of vectors of two cell

samples.

(JPG)

Figure S19 The distribution of inter and intra chromo-
some contact number for Normal-B Cell before using
SCN procedure and after using SCN procedure. The

number of inter contact after using SCN is calculated by summing

up all inter chromosome contact matrix normalized by using SCN

procedure, and then divided by the number of inter chromosome

contact matrix. The number of intra contact after using SCN is

calculated by summing up all intra chromosome contact matrix

normalized by using SCN procedure, and then divided by the

number of intra chromosome contact matrix.

(JPG)

Figure S20 The number of contacts between 13 genes in
the cluster in each cell line.

(JPG)

Figure S21 The visualization of reads mapped to the
HoxA gene region (27,104,502 – 27,212,501) on chromo-
some 7 of the human genome by the UCSC genome
browser. The vertical line segments under the label ‘‘chromo-

some contact’’ denote the locations where the reads were mapped

to. The reads data of the MHH-CALL-4 cell line was used.

(JPG)

Figure S22 The networks of inter-chromosomal gene-
gene interactions between chromosome 11 and 14 for
RL-Cell Line.

(JPG)

Figure S23 Node-degree distribution of Figure 22.

(JPG)

Figure S24 Shortest path frequency of Figure 22.

(JPG)

Figure S25 The distribution of topological coefficients
of the networks shown in Figure 22.

(JPG)

Figure S26 The interaction network between transcrip-
tion factor binding sites (TBSs) in the entire genome of
the MHH-CALL-4 cell line. This is generated based on raw

contacts.

(JPG)

Figure S27 The distribution of node degree of the TBS-
TBS interaction network shown in Figure S26.

(JPG)

Figure S28 The histogram of lengths of the shortest
paths between any two nodes in the TBS-TBS interaction
network shown in Figure S26.

(JPG)

Figure S29 The distribution of topological coefficients
the TBS-TBS interaction network shown in Figure S26.

(JPG)

Figure S30 The distribution of node stresses of the TBS-
TBS interaction network shown in Figure S25.

(JPG)

Figure S31 The interaction network between transcrip-
tion factor binding sites (TBSs) of chromosome 4 and
chromosome 4 of the MHH-CALL-4 cell line. This network

is normalized with the contact threshold 2.

(JPG)

Figure S32 The distribution of node degree of the TBS-
TBS interaction network shown in Figure S31.

(JPG)

Figure S33 The histogram of lengths of the shortest
paths between any two nodes in the TBS-TBS interaction
network shown in Figure S31.

(JPG)

Figure S34 The spatial interaction networks between
genes and transcription factor binding sites (TFB) in
chromosome 14 for the CALL-4 cell line. A node in the

network denotes a gene or a TFB. Two nodes are connected by an

edge if they are spatially contacted.

(JPG)

Figure S35 The node degree distribution of the network
shown in Figure S34. It is shown that the frequency (number of

nodes) is largely linear to the degree of the nodes on the log-log

scale. This suggests that the network is likely a scale-free network.

(JPG)

Figure S36 The histogram of lengths of the shortest
path between any two nodes in the network shown in
Figure S34.

(JPG)
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Figure S37 The distribution of stress values of the
network shown in Figure S34.
(JPG)

Figure S38 The distribution of topological coefficients
of the network shown in Figure S34.
(JPG)

Figure S39 (A) The chromosomal region of the transcription

factor binding site on chromosome 14 of the MHH-CALL-4 cell

line that has the highest contacts with other genes is visualized by

the UCSC genome browser. This transcription factor binding site

contacted 1460 times with GeneID:145508 (starting from the

position 61002767 and ending at 61445813), 1 time with

GeneID:7253, 2 times with GeneID:6710, 2 times with

GeneID:56659, and 1 time with GeneID:9369. (B) The chromo-

somal region of the gene (GeneID:145508) that encodes a

centrosomal protein (128 kDa). More information about this gene

is available at http://www.ncbi.nlm.nih.gov/sites/

entrez?db = gene&term = 145508.

(JPG)

Figure S40 Ligation efficiency. Both the 3C and Hi-C

libraries should run as a fairly tight band larger than 10 Kb.

Ligation efficiency is slightly lower in Hi-C than in 3C and is

indicated by the smear in the Hi-C lanes (see van Berkum et al. in

JoVE for a complete description). The right triangles above each

panel represent increasing or decreasing amounts of template. The

Lambda HindIII ladder (l) and a 1 Kb DNA ladder were also

included on the visualization gels. The uppermost fragment of the

lambda HindIII ladder is 23.13 Kb and the uppermost fragment

of the 1 Kb ladder is 10 Kb. A quantative agarose gel was run

(0.8%) on an acute lymphoblastic leukemia cell line (A), an acute

lymphoblastic leukemia patient sample (B) and a follicular

lymphoma cell line (C). Panel C includes 5 Hi-C template

amounts and one 3C template amount whereas panels A and B

both include 2 Hi-C and 2 3C template amounts.

(JPG)

Figure S41 PCR digest control. A quantative agarose gel was

run (0.8%) on an acute lymphoblastic leukemia cell line (A), an

acute lymphoblastic leukemia patient sample (B) and a follicular

lymphoma cell line (C). During Hi-C the HindIII site is lost and an

NheI site is created (see van Berkum et al. in JoVE for a complete

description of the protocol) and the products can be distinguished

from a 3C experiment by digesting the ligation site. The digested

samples were quantified using ImageJ software. A total of three

PCR reactions were done for both 3C and Hi-C samples. The

reactions were pooled and purified using the Zymo clean and

concentrator kit per the manufacturer’s protocol eluting 2x with

10 mL with water. The PCR products were digested with HindIII

(no blunting of the DNA ends) or NheI (shows blunting and biotin

incorporation). 56% (FL Cell Line), 64% (ALL Cell Line) and 68%

(Patient Sample) of Hi-C amplicons were digested by NheI

confirming the efficient marking of ligation junctions.

(JPG)

Figure S42 An overview of the bioinformatics pipeline
of analyzing Hi-C experimental reads data. The Hi-C wet

lab experiment is similar to the method described in [13], in which

chromosome DNA is cross-linked, ligated and then sheared. Each

of the reads-pairs was mapped to the human genome by the tool

maq (http://maq.sourceforge.net/) with the mistake threshold (–e)

set to 150. Our computer programs analyzed the mapping output

and handled the four different cases in which the reads may cover

different portions of the two chromosomes. These four situations

are illustrated in the following figure. Case one is that each of the

two ends can only be mapped to one location and the two mapped

locations of the two ends are 2000b away. Case two is one end can

be mapped to one location (e.g. location A), but the other end to

two locations (e.g. B and C). In this case, we checked whether one

of the two locations (B or C) is within 2000b of A. If not, the case is

considered invalid and is discarded. 2000bp was used as the

threshold because the average length of the DNA insert is 2000bp

long. Case three is the same as Case two except that the first end

was mapped to two locations and the second to one location. Case

four is both two ends can be mapped to two locations (e.g. one end

to A and B, and the other to C and D as shown in the figure. A, B,

C, and D are the starting positions of the mapping locations). In

this case, we checked whether the distance between A and C is less

than the read length and whether the distance between B and D is

less than the read length. If yes, they were kept. In our first

mapping strategy, only these four cases above were considered and

processed to generate contacts and all the other cases were

discarded. For example, if one end of a pair of ends can be

mapped to . = 3 locations, they were discarded. This process was

able to reduce noise (e.g. wrongly-aligned reads) and ensure the

quality of contact parsing. We also developed the second simplified

strategy to control mapping quality and minimize mapping

ambiguities. That is, only keep the reads that can be uniquely

mapped to one location of the chromosome. If one of the two ends

was mapped to . = 2 locations, these pair of ends were discarded.

We found these two strategies generated similar contacts. The

results presented in this paper were based on contacts generated by

the second strategy that is more stringent. The intra- and inter-

chromosomal contact matrices for chromosomes and chromosome

pairs were visualized as heat maps by the statistical package R.

(JPG)

Figure S43 The distribution of Euclidean Norm of each
region of both inter and intra chromosome contact for
MHH-CALL-4. Figure S37(A) shows the distribution of Euclid-

ean Norm of each region of chromosome 14 which has inter

chromosome contact with chromosome 20 of MHH-CALL-4, we

can see a Gaussian distribution for the Euclidean Norm, and we

set 10 as a threshold, all regions which have Euclidean Norm less

than 10 will be removed. The resolution for each region is 1M.

Figure S37 (B) shows the distribution of Euclidean Norm of the

intra chromosome contact of chromosome 14 of MHH-CALL-4.

The resolution for each region is 10M. We set 10 as the threshold

to normalize the contact map. The threshold 100 is set to

normalize the intra contact map when the resolution for each

region is 1M.

(JPG)

Table S1 Reads coverage of the gene regions and non-
gene regions. The reads coverage of gene region was calculated

as the reads length multiply the number of contact in gene region/

total length of gene region. The coverage of non-gene region was

calculated as the read length * number of contact not in gene

region/total length of non-gene region. Here the gene length was

calculated according to the gene start and end information.

(DOCX)

Table S2 Total number of reads for all samples
mentioned in this work. The data of the normal B cell was

downloaded from the publication [13]. The others were generated

by us. One pair-end read pair contains two ends of reads. This

table shows the total number of ends. For some cell/cell lines, we

sequenced them more than one times and selected the one with

the best quality to use in this work.

(DOCX)
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Text S1 The description of materials and methods of
the Hi-C experiment.

(DOCX)
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