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Abstract

Background: With more and more protein sequences produced in the genomic era, predicting protein structures
from sequences becomes very important for elucidating the molecular details and functions of these proteins for
biomedical research. Traditional template-based protein structure prediction methods tend to focus on identifying
the best templates, generating the best alignments, and applying the best energy function to rank models, which
often cannot achieve the best performance because of the difficulty of obtaining best templates, alignments, and
models.

Methods: We developed a large-scale conformation sampling and evaluation method and its servers to improve
the reliability and robustness of protein structure prediction. In the first step, our method used a variety of
alignment methods to sample relevant and complementary templates and to generate alternative and diverse
target-template alignments, used a template and alignment combination protocol to combine alignments, and
used template-based and template-free modeling methods to generate a pool of conformations for a target
protein. In the second step, it used a large number of protein model quality assessment methods to evaluate and
rank the models in the protein model pool, in conjunction with an exception handling strategy to deal with any
additional failure in model ranking.

Results: The method was implemented as two protein structure prediction servers: MULTICOM-CONSTRUCT and
MULTICOM-CLUSTER that participated in the 11th Critical Assessment of Techniques for Protein Structure Prediction
(CASP11) in 2014. The two servers were ranked among the best 10 server predictors.

Conclusions: The good performance of our servers in CASP11 demonstrates the effectiveness and robustness of
the large-scale conformation sampling and evaluation. The MULTICOM server is available at: http://
sysbio.rnet.missouri.edu/multicom_cluster/.

Keywords: Protein structure prediction, Sequence alignment, Template-based modeling, Template-free modeling,
Model generation, Model evaluation

Background
With the wide application of high-throughput next-
generation sequencing technologies, the number of pro-
tein sequences is growing exponentially in the genomic
era. Since protein functions are determined by protein
structures, obtaining the structures of these proteins
holds the key of utilizing this huge protein resource for

biomedical research, bioengineering, and biotechnology
development [1, 2].
Even though protein structures can be determined by

experimental techniques such as x-ray crystallography
and nuclear magnetic resonance (NMR), they can be
only applied to solve the structures of a tiny portion of
proteins due to their relatively high cost. Since the ter-
tiary structure of a protein is almost uniquely specified
by its amino acid sequence [3], computational methods
of predicting protein structures from sequences are not
only feasible, but also important to reduce the huge
protein sequence-structure gap [4–8].
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Computational protein structure prediction methods
can be broadly classified into two categories: template-
based modeling (TBM) [9–17] and template-free model-
ing (FM) [15, 18, 19]. Template-based modeling is based
on the fact that evolutionarily related proteins tend to
have similar structures [20] and structures change much
slower than sequences [21]. Therefore, in order to pre-
dict the structure of a target protein, template-based
modeling tries to find a target’s homologous protein with
known structure and use it as a template, then transfer
the structure of the template to the target based on their
sequence alignment, and finally adjust the structure to
account for the variation from the template sequence to
the target sequence [22]. Thus far, template-based model-
ing is the most widely used and most accurate technique
for protein structure prediction. However, it cannot work
when no good template is found. In this situation,
template-free modeling is needed to build protein struc-
tures from scratch or from the combination of small struc-
tural fragments. Even though template-based modeling
and template-free modeling use very different techniques
for protein structure prediction, they are in common in
sampling protein conformations in a huge conformation
space for a target. The former is just a more focused, tar-
geted sampling based on known, related structural points
in the space, whereas the latter is a more unbiased, random
sampling to explore a large conformation space.
In order to improve the reliability and robustness of

conformation sampling, some recent protein structure
prediction methods start to enlarge the sampling space
of template-based modeling rather than focusing on one
or a few “best” points, and also try to integrate template-
based modeling and template-free modeling when no
good templates or only partial templates can be found for
a target protein [23–26]. Based on our previous work of
integrating multiple templates and alignments [23–25], we
continued to develop and improve the large-scale con-
formation sampling approach to increase the diversity of
template sampling, sequence alignment sampling, and
model generation and to complement template-based
modeling with template-free modeling in order to create a
model pool of good quality. Given a pool of conformations
for a target, another innovation is to apply an array of
protein model quality assessment methods [27, 28] to
evaluate the quality of the models and rank them rather
than using only one or a few quality assessment methods
as almost all other protein structure prediction methods
do. Furthermore, we added a new exception handling
protocol to detect the problems in the final model ranking
in order to correct the errors slipped through the large-
scale model evaluation.
We implemented the large-scale conformation sampling

and evaluation approach as two automated MULTICOM
web servers: MULTICOM-CONSTRUCTand MULTICOM-

CLUSTER, which share the same conformation sampling
protocol, but differ in the implementation of large-scale
model quality assessment. We blindly benchmarked
MULTICOM-CONSTRUCT and MULTICOM-CLUSTER
in the 11th Critical Assessment of Techniques for Protein
Structure Prediction (CASP11) in 2014. According to the
CASP11 official assessment, the two servers were ranked
among the best 10 server predictors for protein tertiary
structure prediction and were effective for the targets of a
wide-spectrum of difficulty.

Methods
Figure 1 illustrates the large-scale model sampling and
evaluation method implemented in our servers (MUL-
TICOM-CONSTRUCT and MULTICOM-CLUSTER).
Given a target protein sequence, the method uses
sequence-sequence alignment tools or sequence-profile
alignment tools (e.g., PSI-BLAST [29], BLAST [29, 30],
CS-BLAST [31], CSI-BLAST [31], SAM [32] and
HMMer [33]) to search the sequence against a large tem-
plate database consisting of ~125,000 proteins (a full copy
of the PDB database [34] excluding the identical se-
quences), profile-profile alignment tools (e.g., HHSearch
[35], HHSuite [35], HHblits [36], PRC [37], FFAS [38, 39]
and COMPASS [40]) to search the sequence against
a redundancy-reduced template database consisting
of ~39,000 proteins, and locally installed MUSTER
[41] and RaptorX [11] to search it against their smaller
template databases. The parameters used with these align-
ment tools are described in Additional file 1: Table S1 in
the supplemental document.
Each alignment tool identifies a list of templates and

generates a list of pairwise target-template alignments.
This template identification process corresponds to sam-
pling templates for the target protein in the protein fold
space approximated by the template protein databases.
The method uses three different ways to combine

homologous templates and alternative alignments. First, it
combines each pairwise target-template alignment (i.e.
seed alignment) with other pairwise target-template align-
ments whose e-value is equal to or not much larger than
that of the seed alignment. This central-star alignment
algorithm of generating multiple sequence alignments
from pairwise alignments is described in details in [42].
The multiple templates in this combination often have,
but do not guaranteed to have the similar tertiary struc-
tures. Second, it combines each pairwise target-template
alignment with other pairwise target-template alignments
whose aligned structures are similar according to struc-
tural comparison. This approach combines one seed align-
ment with other pairwise alignments whose templates
have similar structures with the template in the seed align-
ment using the central-star algorithm as in [24]. This
approach guaranteed that the structures of the combined
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templates are consistent. Third, it generates a consensus
list of templates ranked by the number of times they are se-
lected by the alignment tools during template identification,
and then uses several multiple sequence alignment tools
(e.g., MUSCLE [43, 44], MSACompro [45], and MSAProbs
[46]) to align the target with the top consensus template
proteins in order to generate multiple sequence alignments.
The combined target-template alignments together

with template structures are fed into Modeller [47, 48]
to generate structural models using comparative model-
ing. For the targets without reliable templates identified, a
template-free modeling tool Rosetta [26, 49] is called to
generate dozens of models to complement the template-
based models. Targets that contain both easy (template-
based) and hard (template-free) domains are often
decomposed into different chunks by dividing the
target sequence into several sub-sequences (chunks)
according to the sequence alignments, where easy do-
mains are covered by homologous templates (i.e., e-
value < 1) and hard domains aren’t covered by any
homologous template. Different modeling protocols
(i.e., template-based protocol or template-free protocol)
are chosen to predict the structures of each chunk. The
conformations of all the chunks will be combined into
a full-length model using Modeller [47, 48] by using
the structural models of different chunks as the tem-
plates for the target protein. In total, about 150–200

structural models are generated for a target using the
protocol described above.
The pool of predicted models was evaluated by 14

quality assessment (QA) methods (e.g., MULTICOM-
NOVEL_QA – a new in-house single QA method, Mod-
FOLDclust2 [50], ProQ2 [51], Pcons [52], APOLLO [53],
ModelEvaluator [54], ModelCheck2 – an improved ver-
sion of ModelEvaluator, QApro – a weighted combin-
ation of ModelEvaluator and APOLLO, SELECTpro
[55], Dope [56], DFIRE2 [57], OPUS_PSP [58], RWplus
[59], RF_CB_SRS_OD [60]). MULTICOM-CONSTRU
CT used the consensus (average) ranking of the individual
rankings produced by these methods to select top five
models as predictions [27, 28]. MULTICOM-CLUSTER
selected top five models based on primarily Apollo pair-
wise similarity score in conjunction with the coverage and
identify of template-target alignments, the e-values of
alignments used to generate the models, and the types
(i.e., template-based, template-free, or the combination of
the two) of the models.
No matter how comprehensive the model evaluation

process is, some bad models may still be ranked at the
top occasionally. In order to solve the problem, for the
first time, we designed an exception handling strategy to
improve or replace the bad models within top five
models in the following six situations: (1) If the top one
model is a template-based model and > = 40 residues in

Fig. 1 The large-scale model sampling and evaluation protocol of the MULTICOM protein structure prediction servers
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its front end or back end are not covered by (i.e. aligned
with) any template, the conformation of these uncovered
residues will be replaced by the conformation of another
model that is covered by a template. (2) If the top one
model is a template-based model and < 40 % of residues
are covered by a template, the model will be replaced by
another top-ranked model with > = 40 % template cover-
age. (3) If the top one model is template-based and the
coverage of the most significant template is < 30 %, all
other templates’ coverage is < 50 % and the highest aver-
age pairwise similarity score in the model pool is < 0.2
(i.e. a hard modeling case), the model is replaced by
another top-ranked model if available. (4) If a model
with > 0.7 target-template sequence identity and > 0.8
template coverage exists in the model pool and the high-
est average pairwise model similarity is > 0.4 GDT-TS
score (i.e. an easy modeling case), the top one model is
replaced with the model that has highest target-template
sequence identity and > 0.8 template coverage and the
highest average pairwise GDT-TS score. (5) If the top
ranked model is a combination of models of protein
domains and a significant template with > 0.7 coverage is
found, the top model may be replaced by a highly
ranked model without domain combination. If domain
division and combination happens, we check if the top
domain-based model is better than the full-length model
to decide if domain division and combination has to be
reverted. If the e-value of templates in top ranked full-
length models (e.g. HHSearch and RaptorX models)
is < e-6, the coverage of templates is > 0.7, and the top
GDT-TS score between the models is > 0.35, the top
full-length model will replace the top domain-based
model as new top 1 model, and the domain-based model
will be used as no. 5 model. And (6) If all the top five
MULTICOM-CONSTRUCT models are ab initio models,
no. 4 and no. 5 models are replaced with top two
template-based models in order to increase the diversity
of the submitted models.

Results and discussion
Summary of results
The method was implemented as two protein structure
prediction servers: MULTICOM-CONSTRUCT and MU
LTICOM-CLUSTER. MULTICOM-CONSTRUCT and M
ULTICOM-CLUSTER participated in the 11th Critical
Assessment of Techniques for Protein Structure Prediction
(CASP11) in 2014. According to the CASP11 official as-
sessment at http://www.predictioncenter.org/casp11/zscor-
es_final.cgi (click on server groups), MULTICOM-CON
STRUCT and MULTICOM-CLUSTER were ranked among
best 10 methods (no. 6 and no. 7) for protein tertiary struc-
ture prediction among 44 server predictors.
We evaluated MULTICOM-CONSTRUCT and MULT

ICOM-CLUSTER on the 105 CASP11 domains whose

experimental structures were released to date. The diffi-
culty of these domains ranges from easy template-based
modeling to hard template-free modeling. Our submit-
ted server models for 105 CASP11 domains were super-
imposed onto the true structures. GDT-TS scores and
TM-scores of the models were calculated by the TM-
score program [61]. Table 1 reports the average GDT-TS
scores and TM-scores of top one and best of five models
predicted by our servers. The average TM-Scores of the
first submitted models and the best of five models are
0.54 and 0.56 respectively for the two servers, which are
higher than the commonly accepted threshold of 0.5 for
a correct topology. Table 2 reports the number of target
domains for which our servers submitted models to
CASP11 whose TM-Scores are higher than 0.5, a common
threshold indicating if a model has correct topology. Our
server submitted models with a TM-Score higher than 0.5
for ~75 % of the TBM domains. But TM-Scores of almost
all the models submitted for FM domains are lower than
0.5, suggesting that generating or selecting good models
for FM targets is still a major challenge.

The quality of the model pool
We investigated the quality of the pool of conformations
for each target generated by our servers in comparison
with our submitted models and all the CASP11 models
submitted by up to 44 server groups around the world.
Figures 2 and 3 show the comparison of GDT-TS scores
of top 1 models of MULTICOM-CONSTRUCT, top 1
models of MULTICOM-CLUSTER, the best models in
the MULTICOM model pool, and the best of top 1
models in CASP11 on 75 easy TBM domains and 30
hard FM domains separately. The target domains were
sorted by the scores of the best CASP11 models, which
are some sort of indicators of the difficult of the target
domains. From the figures, the best models in our model
pool had the same (higher) GDT-TS scores as (than) the
best of top 1 models in CASP11 on 16 TBM domains
and 12 FM domains respectively. Figure 4 shows the
comparison of GDT-TS scores of best of top 5 models
of MULTICOM-CONSTRUCT, best of top 5 models of
MULTICOM-CLUSTER, the best models in the MULTI-
COM model pool, and best of top 5 models in CASP11

Table 1 Average GDT-TS scores and TM-scores of MULTICOM-
CONSTRUCT and MULTICOM-CLUSTER models on 105 CASP11
domains

Predictors Top one Best of top five

GDT-TS TM-score GDT-TS TM-score

MULTICOM-CONSTRUCT 0.48 0.54 0.50 0.56

MULTICOM-CLUSTER 0.49 0.54 0.50 0.56

The numbers represent the average GDT-TS scores and TM-scores of top one
and best of top five models predicted by MULTICOM-CONSTRUCT and
MULTICOM-CLUSTER on 105 CASP11 domains
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on 17 CASP11 domains (12 easy TBM domains and 5
hard FM domains) where the best models in our model
pool had the same (higher) GDT-TS scores as (than)
best of top 5 models in CASP11. Also, the differences in
GDT-TS scores between the best models in our model
pool and the best models in the CASP11 model pool
produced by dozens of protein structure prediction
methods in the community are less than 0.02 and 0.05
on 40 and 65 domains separately. The results indicate
that our large-scale conformation sampling method can
generate good models for a large portion of targets.
Moreover, we evaluated a number of alignment tools

used by the MULTICOM servers. Table 3 reports how
many times each of the independent pairwise alignment
tools excluding the alignment combination methods
generated alignments leading to the creation of the best
models for 75 TBM and 30 FM CASP11 domains. From
the table, HHSearch / HHSuite and its variants contrib-
uted to the creation of the best models for 41 TBM and
8 FM domains, and performed best among these
methods on both TBM and FM domains. However, it is
worth noting that the MULTICOM servers used several

different versions of HHSearch and their combined results
were reported here. RaptorX, MUSTER, HHblits and
COMPASS also contributed to the generation of the best
models on both TBM and FM domains. In addition to
these alignment tools, the template-free modeling tool
Rosetta generated the best models for 1 TBM domain and
13 FM domains. The alignment and model combination al-
gorithms in the MULTICOM server that combined the
output of the independent alignment tools also generated
best models for 24 TBM domains and 4 FM domains. The
experiment shows that the combination of multiple differ-
ent alignment tools improves the quality of the best models
in the model pool and is an effective way to improve the
reliability and robustness of protein structure prediction.

Evaluation of the large-scale model ranking strategy
We compared top 1 models with best of top five models
and the overall best models in the model pool for
MULTICOM-CONSTRUCT and MULTICOM-CLUST
ER on 105 CASP11 domains in order to check the per-
formance of the ranking strategy. Figure 5 (a) and (b)
illustrates the number of domains in various ranges of
differences of GDT-TS scores between best of top 5
models and top 1 models generated by the two servers
respectively. The differences of GDT-TS scores are small
(i.e. < 0.02) on 80 and 79 domains, and the top 1 models
are the best of top five models on 43 and 41 domains for
MULTICOM-CONSTRUCT and MULTICOM-CLUST
ER separately. So, the ranking strategy worked generally
well. However, it failed on some domains. For example,
the top 1 model of T0816-D1 selected by MULTICOM-
CONSTRUCT had a GDT-TS score 0.47, 0.21 less than
0.68 of the best of top five models. Figure 5 (c) and (d)

Table 2 The number of target domains whose models have
TM-Scores higher than 0.5

Predictors TBM domains (75) FM domains (30)

Top 1 Best of 5 Top 1 Best of 5

MULTICOM-CONSTRUCT 57 59 0 0

MULTICOM-CLUSTER 54 57 0 1

The numbers represent the number of target domains for which MULTICOM-
CONSTRUCT and MULTICOM-CLUSTER submitted models to CASP11 whose
TM-Scores with native structures are higher than 0.5 on 75 CASP11 TBM
domains and 30 FM domains

Fig. 2 Comparison of top 1 models in the MULTICOM servers and CASP11 on 75 TBM domains. The comparison is based on GDT-TS scores of
top 1 models of MULTICOM-CONSTRUCT, top 1 models of MULTICOM-CLUSTER, the best models in the MULTICOM model pool, and best of top
1 models in CASP11 on 75 easy TBM CASP11 domains
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shows scatter plots of GDT-TS scores between top 1
models and the best models in the model pool. The dif-
ferences of GDT-TS scores are less than 0.02 on 46 and
50 domains, and less than 0.05 on 74 and 79 domains
for MULTICOM-CONSTRUCT and MULTICOM-CLU
STER separately. Therefore, the ranking strategy success-
fully picked up good models on most of the domains.
We also evaluated the performance of 14 model qual-

ity assessment methods and their consensus ranking.
The consensus ranking of a model is the average rank of
all the rankings predicted by these methods for the

model. Table 4 reports the number of times when top 1
models selected by an individual quality assessment
(QA) method were actually the best of top 1 models
identified by all the QA methods, and the number of
times when top 1 models selected by an individual method
were actually the best models in the MULTICOM model
pool. “Avg loss” means the average loss (difference) in
GDT-TS scores between the best models and top 1
models ranked by each QA method. A tolerance of mar-
ginal difference in scores is applied when calculating these
numbers. The past CASP QA assessments [62–65] show

Fig. 3 Comparison of top 1 models in the MULTICOM servers and CASP11 on 30 FM domains. The comparison is based on GDT-TS scores of top
1 models of MULTICOM-CONSTRUCT, top 1 models of MULTICOM-CLUSTER, the best models in the MULTICOM model pool, and best of top 1
models in CASP11 on 30 hard FM CASP11 domains

Fig. 4 Comparison of top 5 models in the MULTICOM servers and CASP11 on 17 domains. The comparison is based on GDT-TS scores of best of
top 5 models of MULTICOM-CONSTRUCT, best of top 5 models of MULTICOM-CLUSTER, the best models in the MULTICOM model pool, and best
of top 5 models in CASP11 on 17 CASP11 domains where the best models in our model pool had the same (higher) GDT-TS scores as (than) best
of top 5 models in CASP11
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that few predictors could consistently identify good
models within 0.02 GDT-TS score from the best models,
and the average loss of GDT-TS score of best QA
methods was generally larger than 0.02. Therefore, in our
experiment, if GDT-TS score of the top 1 model identifies
by an individual method was within 0.02 GDT-TS score

from the actual best model, the method is considered to
successfully identify the best model. Also, we removed tar-
gets whose highest GDT-TS score is < 0.35 for the analysis
because these models are of poor quality and GDT-TS
score is not a good measure for differentiating models of
less than 0.35 GDT-TS score. The table shows that the
consensus ranking performed better than 14 individual
QA methods in terms of selecting the top 1 model.
SELECTpro, ModFOLDclust2, APOLLO, Pcons, and Pro
Q2 performed best among the 14 individual methods.
However, the probability of any of these methods selecting
the best model is low, indicating that selecting the best
model is still more or less a guess game.

Case study
From our analysis, the submitted models of MULTIC
OM-CONSTRUCT and MULITICOM-CLUSTER are
the best models among all the CASP11 server models
on six CASP11 domains: T0762-D1 (TBM), T0784-D1
(TBM), T0813-D1 (TBM), T0820-D2 (TBM), T0824-D1
(FM), and T0857-D1 (TBM).
Figure 6 (a) shows the structural superposition be-

tween the native structure of T0762-D1 (blue) and a
high-accuracy model (no. 3) predicted by MULTICOM-
CLUSTER (gold), which was reconstructed from mul-
tiple templates (i.e. 4IB2A, 4EF1A, 4OTEA, and 4K3FA).
The model is the best model among all the models

Table 3 The number of times that each alignment tool
contributed to generation of the best models

Alignment tool # of times generating best models

TBM & FM domains TBM domains FM domains

HHSearch / HHSuite 49 41 8

RaptorX 13 10 3

MUSTER 7 5 2

HHblits 7 6 1

COMPASS 6 5 1

PSI-BLAST 2 2

BLAST 1 1

HMMer 1 1

PRC 1 1

FFAS 1 1

The numbers represent the number of times that each of the independent
pairwise alignment tools excluding the alignment combination methods
generated alignments leading to the creation of the best models for 75 TBM
and 30 FM CASP11 domains. It is worth noting that the results of several
versions of HHSearch used in the MULTICOM server are combined together

Fig. 5 Evaluation of the ranking strategy. a and b illustrate the number of domains in various ranges of differences in GDT-TS scores between
best of top 5 models and top 1 models generated by MULTICOM-CONSTRUCT and MULTICOM-CLUSTER respectively on 105 CASP11 domains. c
and d show scatter plots of GDT-TS scores between top 1 models and the best models in the model pool for the two servers separately
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submitted to CASP11 for T0762-D1. It has a GDT-TS
score 0.86 and RMSD 2.3 Å with the native structure.
Figure 6 (b) illustrates the distributions of GDT-TS
scores of the MULTICOM server models (red) and the
CASP server models (blue) of T0762-D1. Here, the MUL-
TICOM server models include all the models in the MUL-
TICOM candidate pool. Density (Y-axis) represents the
number of models. The two distributions are similar and
most models have GDT-TS scores around 0.8 or above,

but the MULTICOM model pool contains the best models.
The results show that our method successfully identified
homologous templates, generated good alignments, and
constructed and picked up high-quality models for this
domain.
Figure 7 (a) shows the structural superposition between

the native structure of T0813-D1 (blue) and the top 1
model of MULTICOM-CONSTRUCT (gold), which was
reconstructed from four templates (3KTDA, 2F1KA,
3B1FA, and 3GGOA). The model is the best model among
all the models submitted to CASP for T0813-D1. It has a
GDT-TS score of 0.81 with the native structure. Figure 7
(b) illustrates the distributions of GDT-TS scores of the
MULTICOM server models (red) and the CASP server
models (blue). Here, the MULTICOM server models
include all the models in the MULTICOM candidate pool.
Density (Y-axis) represents the number of models. The
distribution of the MULTICOM server models is bimodal,
suggesting the models were constructed from both very
good templates and some sub-optimal templates. The
distribution of the CASP server models is uni-modal with
mostly good models and a small number of low-quality
models that may be constructed by template-free model-
ing methods or from bad templates. The MULTICOM
server model is the best server model for T0813-D1 in
CASP11, indicating that our method generated a pool of
good models and selected the best models from the pool
for this domain.
We also investigated the cases in which the MULTI-

COM servers failed due to not generating good models
or not being able to select good models from the model
pool. The most dramatic failure occurred on T0845-D1,
for which the best submitted model (no. 2) by MULTI
COM-CLUSTER has a GDT-TS score of 0.29. The GD
T-TS score of the best model in the MULTICOM model
pool is 0.52, 0.23 point higher than the best submitted

Table 4 Comparison of 14 model quality assessment methods
and their consensus ranking

QA method Best of
top 1

Avg loss Best in
the pool

Avg loss

Consensus ranking 34 0.04 17 0.07

SELECTpro 32 0.05 17 0.08

ModFOLDclust2 30 0.07 18 0.10

APOLLO 30 0.07 16 0.09

Pcons 29 0.07 16 0.10

ProQ2 27 0.05 15 0.07

QApro 18 0.07 8 0.09

ModelCheck2 16 0.16 10 0.18

MULTICOM-NOVEL_QA 11 0.11 4 0.14

DFIRE2 9 0.11 6 0.14

Dope 9 0.11 6 0.14

ModelEvaluator 9 0.13 6 0.16

OPUS_PSP 9 0.11 6 0.14

RF_CB_SRS_OD 9 0.11 6 0.14

RWplus 9 0.11 6 0.14

“Best of top 1” means the number of times when top 1 models selected by an
individual QA method were actually the best of the top 1 models identified by
all the QA methods. “Best in the pool” means the number of times when top 1
models by an individual method were actually the best models in the
MULTICOM model pool. “Avg loss” means the average loss of GDT-TS scores
between the best models and top 1 models ranked by each QA method

Fig. 6 One good prediction of MULTICOM-CLUSTER on T0762-D1. a Structural superposition between the native structure of T0762-D1 (blue) and
the no. 3 model of MULTICOM-CLUSTER (gold). b Distribution of GDT-TS scores of the MULTICOM server models (red) and the CASP server models
(blue) of T0762-D1

Li et al. BMC Bioinformatics  (2015) 16:337 Page 8 of 11



model. Figure 8 (a) shows the structural superposition
between the native structure of T0845-D1 (blue) and the
best submitted model by MULTICOM-CLUSTER (gold)
and the best model in the MULTICOM model pool
(purple). The best model in the pool superimposed
much better with the native structure. Figure 8 (b) visu-
alizes the distributions of GDT-TS scores of the MULTI-
COM server models (red) and the CASP server models
(blue) of T0845-D1. The majority of the MULTICOM
server models except a few ones are of bad quality. The
distribution of the CASP server models is bimodal,
where a significant portion of models is of good quality.
The GDT-TS score 0.71 of the best CASP11 model
(TASSER-VMT_TS4) is much better than that of MUL-
TICOM models, suggesting that our servers failed to
generate good models. Also, the ranking strategy in our
servers was not able to select the few relatively good
models in its model pool on this domain. The case

suggests that both model generation and model selection
in the MULTICOM servers still have a significant room
for improvement.

Availability
After being rigorously tested in CASP11, the protein
structure prediction web service of MULTICOM-CLU
STER is released for public use at http://sysbio.rnet.mis-
souri.edu/multicom_cluster/. Since MULTICOM-CONS
TRUCT is slower than MULTICOM-CLUSTER and has
similar accuracy as MULTICOM-CLUSTER, it is not
made available for public use.
The experimental data of MULTICOM in CASP11 is

available through the link “Experimental data (models
and alignments) in CASP11” on the home page of the
MULTICOM server at http://sysbio.rnet.missouri.edu/
multicom_cluster/.

Fig. 7 One good prediction of MULTICOM-CONSTRUCT on T0813-D1. a Structural superposition between the native structure of T0813-D1 (blue)
and the top 1 model of MULTICOM-CONSTRUCT (gold). b Distribution of GDT-TS scores of the MULTICOM server models (red) and the CASP server
models (blue) of T0813-D1

Fig. 8 One bad prediction of MULTICOM-CLUSTER on T0845-D1. a Structural superposition between the native structure of T0845-D1 (blue) and
the no. 2 submitted model of MULTICOM-CLUSTER (gold) and the best model in the MULTICOM model pool (purple). b Distribution of GDT-TS
scores of the MULTICOM server models (red) and the CASP server models (blue) of T0845-D1
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Conclusions
We developed and implemented a large-scale conform-
ation sampling and evaluation method to improve the
reliability and robustness of protein structure prediction,
overcoming the problem of failing to obtain the best
template, alignment and model in traditional protein
structure prediction methods. The approach can natur-
ally integrate multiple templates, multiple alignments,
and diverse sampling and evaluation methods into one
system to improve model sampling and ranking as dem-
onstrated by the good performance of our method in the
CASP11 experiment. Furthermore, our analysis of the
quality of conformation pool provides the new insights
into the sampling and evaluation of protein models.
Overall, the method and its server implementation are
useful tools for protein structure predictors and users.
However, despite of the progress enabled by the large-

scale sampling and evaluation approach, there are still
some major challenges in protein structure prediction,
including how to reliably identify weak homologous
templates from irrelevant noisy templates, how to enrich
the proportion of good alignments, how to distinguish a
few good models from a large number of low-quality
models, and finally how to generate better template-free
models when no homologous template exists. In order
to solve these problems, on the one hand more sensitive
or complementary data mining methods need to be de-
veloped to mine a large number of templates, align-
ments, and protein models produced by existing
methods, on the other hand novel methods for simulat-
ing alignments and structural models for hard targets
more effectively are required to generate ensembles of
protein conformations of better quality.

Additional file

Additional file 1: Table S1. It contains the information about different
sequence alignment tools used in our method. The information includes
names, version numbers, alignment types (e.g. sequence-sequence,
profile-sequence, and profile-profile), and parameters of these sequence
alignment tools. (DOCX 19 kb)
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