
 

 

 

 

GENOME DATA ANALYSIS, PROTEIN FUNCTION AND STRUCTURE 

PREDICTION BY MACHINE LEARNING TECHNIQUES 

_______________________________________ 

A Dissertation 

presented to 

the Faculty of the Graduate School 

at the University of Missouri-Columbia 

_______________________________________________________ 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy 

_____________________________________________________ 

by 

RENZHI CAO 

Professor Jianlin Cheng, Dissertation Supervisor 

JULY 2016 

 

 



 

ii 

The undersigned, appointed by the dean of the Graduate School, have examined the 

dissertation entitled 

GENOME DATA ANALYSIS, PROTEIN FUNCTION AND STRUCTURE 

PREDICTION BY MACHINE LEARNING TECHNIQUES 

presented by Renzhi Cao, a candidate for the degree of doctor of philosophy and hereby 

certify that, in their opinion, it is worthy of acceptance. 

 

 

Professor Jianlin Cheng 

Professor Shijie Chen 

Professor Ye Duan 

Professor William Harrison 



 

iii 

 

DEDICATION 

To my parents: Yingen and Meizhen,  

who made all of this possible by their endless encouragement and patience.  

To my wife Wen Wang and my son Yufan Cao.  

who give all of their support and bring happiness to me during my tenure as doctoral 

student.  

 

 

If you can keep your head when all about you 

Are losing theirs and blaming it on you, 

If you can trust yourself when all men doubt you, 

But make allowance for their doubting too; 

If you can wait and not be tired by waiting, 

Or being lied about, don’t deal in lies, 

Or being hated, don’t give way to hating, 

And yet don’t look too good, nor talk too wise. 

 

If you can talk with crowds and keep your virtue, 

Or walk with Kings—nor lose the common touch, 

If neither foes nor loving friends can hurt you, 

If all men count with you, but none too much; 

If you can fill the unforgiving minute 

With sixty seconds’ worth of distance run, 

Yours is the Earth and everything that’s in it, 

And—which is more—you’ll be a Man, my son. 

 

- Rudyard Kipling, Rewards and Fairies (1910) 

 



 

iv 

 

ACKNOWLEDGEMENTS 

First of all, I would like to give my appreciation to my long-time advisor and committee 

chair Dr. Jianlin Cheng. He guides me to this interesting Ph.D research, and gives me a lot 

of good suggestions and supports. Without his kindness and considerable mentoring, I 

could not finish my doctoral work. 

Second, I am very lucky to have the opportunity to work with people in the lab who are 

better than me, and drift me to the right direction. I appreciate all people currently in the 

lab, including: Debswapna Bhattacharya, Jie Hou, Badri Adhikari, Tuan Anh Trieu, 

Oluwatosin Oluwadare, and also people who graduate before me, including: Dr. Zheng 

Wang, Dr. Xin Deng, and Dr. Jesse Eickholt.  

Third, I want to appreciate my colleagues at Samsung Research America who bring me an 

extraordinary experience, including: Varun Shimoga Prakash, William Reginald Swaney, 

Chongyang Xie, Victor Borodkin, Naman Patel, Louisa Toy-Wong, Shuo Wang, Haiqing 

Jiang, and Xinwen Zhang.  

Finally, I would like to thank my committee members for their supports and suggestions, 

including: Dr. Shijie Chen, Dr. Ye Duan, and Dr. William Harrison.  

 

 



 

 

 

TABLE OF CONTENTS 

 

DEDICATION................................................................................................................. III 

ACKNOWLEDGEMENTS ........................................................................................... IV 

LIST OF TABLES .......................................................................................................... XI 

LIST OF FIGURES .......................................................................................................XV 

ABSTRACT ..................................................................................................................... 20 

CHAPTER ................................................................................................................ PAGE 

 INTRODUCTION ................................................................................... 21 

1.1 Genome data analysis .............................................................................................. 22 

1.2 Genome data analysis protein function prediction .................................................. 22 

1.3 Protein structure prediction ..................................................................................... 23 

 DECIPHERING THE ASSOCIATION BETWEEN GENE 

FUNCTION AND SPATIAL GENE-GENE INTERACTIONS IN 3D 

HUMAN GENOME CONFORMATION......................................................... 27 

2.1 Abstract ................................................................................................................... 27 

2.2 Introduction ............................................................................................................. 28 

2.3 Methods ................................................................................................................... 30 

2.3.1 Calculation of gene function similarity between two genes ......................... 30 

2.3.2 Construction of genome-wide spatial gene-gene interaction networks ........ 30 

2.3.3 Calculation of sequence identity ................................................................... 31 



 

vi 

2.3.4 Gene function prediction based on spatial gene-gene interaction networks . 31 

2.4 Results and Discussion ............................................................................................ 32 

2.4.1 The spatial gene-gene interaction network for whole genome and thresholds 

for substantially interacting gene pairs ...................................................................... 32 

2.4.2 The function similarity of gene pairs that do not spatially interact and that 

have substantial interactions ...................................................................................... 35 

2.4.3 The statistics of the number of interactions for substantially interacting gene 

pairs at each function similarity level ........................................................................ 36 

2.4.4 The sequential genomic distance for substantially interacting gene pairs at 

each function similarity level..................................................................................... 38 

2.4.5 Sequence identity of substantially interacting genes at each function 

similarity level ........................................................................................................... 40 

2.4.6 Identification of interacting genes with high function similarity with 

sequence identity, genomic distance, and interaction strength .................................. 42 

2.4.7 The relationship between sequence identity and function similarity for 

substantially interacting gene pairs and random non-interacting gene pairs ............. 43 

2.4.8 The relationship among genomic distance, interaction numbers, and function 

similarity for interacting gene pairs ........................................................................... 46 

2.4.9 Evaluation of gene function predictions based on spatial gene-gene 

interactions ................................................................................................................. 47 



 

vii 

 INTEGRATED PROTEIN FUNCTION PREDICTION BY MINING 

FUNCTION ASSOCIATIONS, SEQUENCES, AND PROTEIN-PROTEIN 

AND GENE-GENE INTERACTION NETWORKS ....................................... 52 

3.1 Abstract ................................................................................................................... 52 

3.2 Introduction ............................................................................................................. 53 

3.3 Methods ................................................................................................................... 56 

3.3.1 MIS score ...................................................................................................... 58 

3.3.2 NET score ...................................................................................................... 60 

3.3.3 SEQ score ...................................................................................................... 62 

3.3.4 Score combination ......................................................................................... 63 

3.3.5 Score scaling ................................................................................................. 64 

3.4 Results and discussion ............................................................................................. 65 

3.4.1 Parameters in Apriori algorithm for calculating MIS score .......................... 65 

3.4.2 Prediction Performance ................................................................................. 67 

3.4.3 Case study ..................................................................................................... 70 

3.5 Conclusion ............................................................................................................... 73 

 DESIGNING AND EVALUATING THE MULTICOM PROTEIN 

LOCAL AND GLOBAL MODEL QUALITY PREDICTION METHODS IN 

THE CASP10 EXPERIMENT........................................................................... 75 

4.1 Abstract ................................................................................................................... 75 

4.2 Introduction ............................................................................................................. 76 

4.3 Methods ................................................................................................................... 79 



 

viii 

4.3.1 Protein Model Quality Prediction Methods .................................................. 79 

4.3.2 Evaluation Methods....................................................................................... 81 

4.4 Results and Discussions .......................................................................................... 83 

4.4.1 Results of global quality predictions ............................................................. 83 

4.4.2 Results of local quality .................................................................................. 95 

 SINGLE-MODEL QUALITY ASSESSMENT ON THE 

ASSESSMENT OF SCORES FROM PROBABILITY DENSITY 

FUNCTION ....................................................................................................... 100 

5.1 Abstract ................................................................................................................. 100 

5.2 Introduction ........................................................................................................... 101 

5.3 Methods ................................................................................................................. 103 

5.3.1 Feature generation ....................................................................................... 103 

5.3.2 Feature errors estimation ............................................................................. 106 

5.3.3 Feature weight estimation ........................................................................... 107 

5.3.4 Model quality assessment based on probability density function ............... 108 

5.4 Results ................................................................................................................... 109 

5.4.1 Feature normalization result ........................................................................ 109 

5.4.2 Feature error estimation result..................................................................... 112 

5.4.3 Global quality assessment result ................................................................. 113 

5.5 Discussion ............................................................................................................. 118 

 DEEPQA: IMPROVING THE ESTIMATION OF SINGLE 

PROTEIN MODEL QUALITY WITH DEEP BELIEF NETWORKS ...... 119 



 

ix 

6.1 Abstract ................................................................................................................. 119 

6.2 Introduction ........................................................................................................... 120 

6.3 Methods ................................................................................................................. 123 

6.3.1 Datasets ....................................................................................................... 123 

6.3.2 Input features for DeepQA .......................................................................... 123 

6.3.3 Deep belief network architectures and training procedure .......................... 125 

6.3.4 Model accuracy evaluation metrics ............................................................. 127 

6.4 Results and Discussion .......................................................................................... 128 

6.4.1 Comparison of Deep learning with support vector ma-chines and neural 

networks ................................................................................................................... 128 

6.4.2 Comparison of DeepQA with other single-model QA methods on CASP11

 129 

6.4.3 Case study of DeepQA on ab initio datasets ............................................... 131 

6.5 Conclusions ........................................................................................................... 132 

 LARGE-SCALE MODEL QUALITY ASSESSMENT FOR 

IMPROVING PROTEIN TERTIARY STRUCTURE PREDICTION ....... 133 

7.1 Abstract ................................................................................................................. 133 

7.2 Introduction ........................................................................................................... 134 

7.3 Methods ................................................................................................................. 137 

7.3.1 Large-scale protein model quality assessment for protein tertiary structure 

prediction ................................................................................................................. 137 

7.3.2 Evaluation of top ranked models ................................................................. 142 



 

x 

7.4 Results and Discussions ........................................................................................ 142 

7.5 Conclusions ........................................................................................................... 153 

 MASSIVE INTEGRATION OF DIVERSE PROTEIN QUALITY 

ASSESSMENT METHODS TO IMPROVE TEMPLATE BASED 

MODELING IN CASP11 ................................................................................. 154 

8.1 Abstract ................................................................................................................. 154 

8.2 Introduction ........................................................................................................... 155 

8.3 Methods ................................................................................................................. 158 

8.3.1 Massive protein model quality assessment for ranking protein structural 

models 159 

8.3.2 Summary of some individual QA methods used by MULTICOM ............. 164 

8.3.3 Evaluation.................................................................................................... 166 

8.4 Results and discussions ......................................................................................... 167 

8.5 Conclusions ........................................................................................................... 179 

BIBLIOGRAPHY ......................................................................................................... 180 

VITA ............................................................................................................................. 190 

 



 

xi 

LIST OF TABLES 

Table 2.1. Contact thresholds and the corresponding numbers of interacted genes for the 

spatial gene-gene interaction networks constructed for four cells / cell lines. .......... 35 

Table 3.1. The precision, recall, and multiplication of precision and recall for different 

values of minimum support and confidence according to five-fold cross validation.66 

Table 3.2. Summary of PDB ids with their true functions and the protein function 

predictions by our methods for case study. ............................................................... 73 

Table 4.1. The average correlation (Ave. Corr.), overall correlation (Over. Corr.), average 

GDT-TS loss (Ave. loss), average Spearman’s correlation (Ave. spearman), average 

Kendall tau correlation (Ave. Kendall) of MULTICOM servers, DAVIS-

QAconsensus, Pcons, and ModFOLDclust2 on Stage1 of CASP10. ........................ 85 

Table 4.2. The average correlation, overall correlation, average GDT-TS loss, average 

Spearman’s correlation, average Kendall tau correlation of MULTICOM servers, 

DAVIS-QAconsensus, Pcons, and ModFOLDclust2 on Stage2 of CASP10............ 86 

Table 4.3. The P-value of pairwise wilcoxon signed ranked sum test for the difference of 

correlation score between MULTICOM servers on Stage1 and Stage2 of CASP10, 

and three other methods: DAVIS-QAconsensus, Pcons, and ModFOLDclust2 ....... 88 

Table 4.4. Pearson correlation of the FM (template-free modeling) targets on Stage1 of 

CASP10 ..................................................................................................................... 93 

Table 4.5. Pearson correlation of all FM (template-free modeling) targets on Stage2 of 

CASP10 ..................................................................................................................... 93 



 

xii 

Table 4.6. Evaluation result of local quality score of four servers, DAVIS-QAconsensus, 

Pcons, and ModFOLDclust2 on Stage1 and Stage2 of CASP10. ............................. 96 

Table 4.7. The P-value of pairwise wilcoxon signed ranked sum test for the difference of 

correlation score for local model quality between MULTICOM servers on Stage1 

and Stage2 of CASP10, and three other methods: DAVIS-QAconsensus, Pcons, and 

ModFOLDclust2. ....................................................................................................... 98 

Table 4.8. Local quality score of four servers, DAVIS-QAconsensus, Pcons, and 

ModFOLDclust2 for all FM (template-free modeling) targets on Stage1 of CASP10.

 ................................................................................................................................... 98 

Table 4.9. Local quality score of four servers, DAVIS-QAconsensus, Pcons, and 

ModFOLDclust2 for all FM (template-free modeling) targets on Stage2 of CASP10.

 ................................................................................................................................... 99 

Table 5.1. The per-target average correlation, average loss, average spearman, and 

average kendall tau score of our method Qprob and other pure single-model QA 

methods on sel20 CASP11 dataset. ......................................................................... 115 

Table 5.2. The per-target average correlation, average loss, average spearman, and 

average kendall tau score for our method Qprob and several other pure single-model 

QA methods on top150 CASP11 dataset. ................................................................ 116 

Table 6.1. 16 features for benchmarking DeepQA. ........................................................ 124 

Table 6.2. The accuracy of Deep Belief Network, Support Vector Machines, and Neural 

Networks in terms of MAE based on cross validation of training datasets, the 



 

xiii 

average per-target correlation, and loss on stage 1 and stage 2 of CASP11 datasets 

for all three difference techniques. .......................................................................... 129 

Table 6.3. Average per-target correlation and loss for DeepQA and other top performing 

single-model QA methods on CASP11. The table is ranked based on the average per-

target loss on stage 2 of CASP11. ........................................................................... 131 

Table 6.4. Model selection ability on ab initio datasets for DeepQA, ProQ2, Dope2, and 

RWplus score. .......................................................................................................... 132 

Table 7.1. All 14 QA methods with the details. The highlighted methods are built in 

house. S: single-model method; M: multi-model method ....................................... 137 

Table 7.2. The top 10 tertiary structure predictors ranked based on the summation of the 

Z-scores of the first models, and their summation of the Z-scores of best of the five 

submitted models ..................................................................................................... 143 

Table 7.3. The top 10 predictors ranked based on the total number times their models 

were selected by our MULTICOM predictor on all the human targets or template-

based (TBM) human targets only ............................................................................ 144 

Table 7.4. Comparison of MULTICOM with each QA method and the two different 

consensus methods (one based on 6 QA methods and another one based on 14 QA 

methods) on the average GDT-TS score and Z-score of the top models selected, and 

the significance of difference between each QA method and MULTICOM. Italic font 

denotes single-model methods................................................................................. 144 



 

xiv 

Table 7.5. The total number times that each QA method performed better than other QA 

methods on all human targets or all template based (TBM) human targets only. Italic 

denotes single-model methods................................................................................. 148 

Table 8.1. Publicly available single-model QA methods used in our MULTICOM 

method. .................................................................................................................... 160 

Table 8.2. The average scores of the first models submitted by MULTICOM (bold) and 

top 25 performing server predictors. ....................................................................... 168 

Table 8.3. The average scores of the best of top five models submitted by MULTICOM 

(bold) and top 25 performing server predictors. ...................................................... 169 

Table 8.4. Comparison for the top 1 model selected by MULTICOM and each QA 

method based on GDT-HA score ............................................................................ 177 

 

 

 

 

 

 



 

xv 

LIST OF FIGURES 

Figure 2.1.  Visualization of gene-gene interaction network. Figure 2.1A is the plot of the 

numbers of interacted genes against interaction / contact thresholds for four cells / 

cell lines respectively. X-axis denotes the interaction thresholds and Y-axis the 

numbers of interacted genes found at the thresholds. Figure 2.1B is the visualization 

of the largest cluster of the gene-gene interaction network for the Call4 cell line at 

interaction threshold 16. The network was visualized by Cytoscape [40]. ............... 34 

Figure 2.2. The histograms of gene function similarities of non-interacted gene pairs and 

substantially interacted gene pairs. Figure 2.2A, 2.2B, and 2.2C represent the 

histogram for Biological Process, Cellular Component, and Molecular Function 

respectively. ............................................................................................................... 36 

Figure 2.3.  The average number of interactions between substantially interacted gene 

pairs within each functional similarity bin in three function categories. This is for the 

primary tumor B-cells (ALL). Figure 2.3A, 2.3B, and 2.3C represent the histogram 

for Biological Process, Cellular Component, and Molecular Function respectively. 38 

Figure 2.4.  The average genomic distances of substantially interacted gene pairs in each 

functional similarity bin in three function categories. This is for the primary tumor 

B-cells (ALL). Figure 4A, 4B, and 4C represent the histogram for Biological 

Process, Cellular Component, and Molecular Function respectively. ....................... 40 

Figure 2.5.  The boxplot of gene sequence identity against function similarity in three GO 

categories. Figure 2.5A, 2.5B, and 2.5C represent the histogram for Biological 

Process, Cellular Component, and Molecular Function respectively. This figure is 



 

xvi 

generated on the gene-gene interaction network of the ALL B-cell constructed at 

interaction threshold 18. X-axis denotes the functional similarity scores / bins and Y-

axis gene sequence identity. ...................................................................................... 41 

Figure 2.6.  Plot of function similarity against sequence identify for substantially 

interacted gene pairs and non-interacted gene pairs. X-axis denotes the gene 

sequence identity and Y-axis the gene function similarity in all three categories (BP, 

CC, MF), respectively. .............................................................................................. 44 

Figure 2.7.  The sequence identity and the number of gene interactions. The number of 

interactions is normalized to the range of 0 to 1. The result is generated on the ALL 

gene-gene network with >=1 interactions. X-axis denotes the sequence identity and 

Y-axis the normalized number of interactions. ......................................................... 45 

Figure 2.8.  The 3D plot of genomic distance, number of interactions and the function 

similarity in three function categories. Figure 2.8A, 2.8B, and 2.8C represent the 

histogram for Biological Process, Cellular Component, and Molecular Function 

respectively. The yellow dots represent long genomic distances and the red ones the 

opposite. ..................................................................................................................... 47 

Figure 2.9.  The histograms of function prediction accuracy (the maximum similarity 

scores between predicted GO terms and real GO terms) on the spatial gene-gene 

interaction networks of the Call4 cell line at different interaction thresholds ........... 50 

Figure 2.10.  The histograms of function prediction accuracies for different numbers (1 – 

10) of GO terms selected as predictions. ................................................................... 51 

Figure 3.1.  The overall flowchart of our method. ............................................................ 57 



 

xvii 

Figure 3.2.  The performance comparison for MIS, SEQ, and SMISS using scaled 

technique benchmarked on CAFA1. X-axis shows the recall of the prediction, and y-

axis shows the precision of the prediction. ................................................................ 69 

Figure 3.3.  The performance of our SMISS with three standard baseline method and 

three predictors from an automated three-level method. Prediction 57, 58, 59 is the 

standard baseline method, and Predictors 1, 2, 3 is three predictors from an 

automated three-level method. X-axis shows the recall for each predictor, and y-axis 

shows the precision for each predictor. ..................................................................... 70 

Figure 4.1.  The per-target correlation scores of each target against the average real 

quality of the largest model cluster divided by the average real quality of all models 

in this target on Stage2 .............................................................................................. 88 

Figure 4.2.  The influence of side chain on average correlation and loss of both Stage1 

and Stage2. Figure 4.2A shows the average correlation of the predictions with or 

without side-chain repacking, and Figure 4.2B demonstrates the loss of the 

predictions with or without side-chain repacking on both Stage1 and Stage2. The 

tool SCWRL[109] is used for the side-chain repacking. ........................................... 90 

Figure 4.3.  The hierarchy tree of T0741 on Stage1. All models in the circle form the 

largest cluster in this target. The rightmost column of Figure 3 lists the real GDT-TS 

score of each model. The models in the circle form the largest cluster. The model 

with the underline real GDT-TS score is the best model in this target ..................... 94 

Figure 4.4.  The real GDT-TS score and predicted GDT-TS score of MULTICOM-

REFINE and MULTICOM-NOVEL for T0684 on Stage 1 and Stage2. .................. 95 



 

xviii 

Figure 5.1.  The relationship of sequence length and three energy scores (DFIRE2, 

RWplus, and RF_CB_SRS_OD scores) on PISCES database. ............................... 111 

Figure 5.2.  The probability density distribution for the error estimation of all 11 feature 

scores. ...................................................................................................................... 112 

Figure 5.3.  The summation of Z-score for the top 1 model selected by each method ... 117 

Figure 6.1.  The Deep Belief Network architecture for DeepQA. .................................. 127 

Figure 7.1.  The workflow of the MULTICOM method comprised of six steps. ........... 141 

Figure 7.2.  Tertiary structure prediction of domain 2 of T0783 (T0783-D2). (A) The 

superposition of the MULTICOM human TS1 model on domain 2 with the native 

structure. (B). The distribution of 191 models in the model pool. (C). The plot of the 

true GDT-TS scores of models against their predicted ranking. ............................. 149 

Figure 7.3.  Tertiary structure prediction of domain 1 of T0767 (T0767-D1). (A) The 

superposition of the MULTICOM human TS1 model on domain 1 with the native 

structure. (B). The distribution of 195 models in the model pool. (C). The plot of the 

true GDT-TS scores of models against their predicted ranking. ............................. 151 

Figure 7.4.  The plot of the difference between the initial GDT-TS scores before model 

combination and the GDT-TS scores after model combination against the initial 

GDT-TS scores of top one models of 42 targets ..................................................... 152 

Figure 8.1.  Workflow of MULTICOM large-scale model quality assessment method. 160 

Figure 8.2.  Performance of MULTICOM and server predictors with respect to number of 

residues in domain ................................................................................................... 171 



 

xix 

Figure 8.3.  Performance of MULTICOM and server predictors with respect to difficulty 

of target .................................................................................................................... 172 

Figure 8.4.  Accuracy of MULTICOM compared to other server predictors ................. 173 

Figure 8.5.  Case study for CASP11 targets T0853-D1 and T0830-D1. ........................ 176 

Figure 8.6.  Comparison of MULTICOM with individual QA methods. ....................... 176 

Figure 8.7.  Landscape of MULTICOM’s ranking. ........................................................ 178 



 

20 

ABSTRACT 

The raw information of a typical human genome has been generated at 2001 by Human 

Genome Project. However, since there are a huge amount of data, it is still a big challenge 

for people to understand them, and extract useful structure and function information, such 

as the function of genes, the structure of proteins encoded by gene, and the function of 

proteins. Understanding these information is crucial for us to improve longevity and quality 

of life, and has a lot of applications, such as genomic medicine, drug design, and etc. In the 

meantime, machine learning techniques are growing rapidly and are good at processing 

large datasets, but many of them are limited for the impact on larger real world problems.  

In this thesis, three major contributions are described. First of all, we generate gene-

gene interaction network from human genome conformation data by Hi-C technique, and 

the relationship of gene function and gene-gene interaction has been discovered. Second, 

we introduce a novel framework SMISS, which uses new source of information from gene-

gene interaction network and uses a new way to integrate difference sources of information 

for protein function prediction. Finally, we introduce a tool called DeepQA which use 

machine learning technique to evaluate how well is the predicted protein structure, and a 

method MULTICOM for protein structure prediction. All of these protein structure and 

function prediction methods are available as software and web servers which are freely 

available to the scientific communities. 
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Introduction 

Genome inside a cell is consist of double-stranded DNA sequences, and some 

special region of DNA sequences, so called protein-coding gene, can be encoded to 

proteins, which build the foundation of an organism. Understanding genome information 

is crucial for longevity and quality of life. By 2001, more than 90 percent of human genome 

sequence has been released [1], and the price of genome sequencing for a person is 

decreasing every year from more than billion dollars to less than thousand dollars now. We 

are in the personal genomics era because of technology development of genome 

sequencing. Similarly, with the wide application high-throughput next-generation 

sequencing technologies [2], a large number of proteins have been sequenced during the 

last decades. However, it is still a big challenge to determine, and understand the structural 

and function information of genome and protein, since the total amount of data for genome 

and protein is huge and not straight forward for people to visualize and understand. At the 

same time, machine learning techniques and data mining techniques are very good at 

processing large data and discover patterns, which powers many aspects of modern society 

from speech recognition to web searches, especially deep learning techniques [3]. There 

are a lot of promising applications for using machine learning techniques to interpret 

genome, and to predict protein function and structures, such as genomic medicine, drug 

design, and etc. [4].  

In this dissertation, I mainly focus on my research in genome data analysis, protein 

function and structure prediction.  
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1.1 Genome data analysis 

           As more and more genomes have been sequenced, it is important to annotate and 

analyze structure and function information of genome, such as gene function. Because of 

the complexity of human genome, its three dimensional structure is still not determined. 

However, the Hi-C technique invented in 2009 [5] can be used to determine genome-wide 

chromosomal interaction data. Based on this technique, we generate spatial gene-gene 

interacting network and investigate whether spatially interacting genes tend to share similar 

function. The genomic distance and sequence identity have also been considered for 

analysis of gene pairs. In addition, we introduce a gene function prediction method based 

on gene-gene interacting network generated from genome data by Hi-C technique, and the 

accuracy of this method is high based on our benchmark on a large number of genes. 

Chapter 2 of this dissertation mainly describe the above-mentioned research, which is 

published in BMC genomic journals: 

R. Cao, J. Cheng. (2015). Deciphering the association between gene function and spatial 

gene-gene interactions in 3D human genome conformation. BMC genomics, 16:880. 

[2015 Impact factor 3.986]. [6] 

1.2 Genome data analysis protein function prediction 

Protein function is important for understanding life at molecular level. However, 

experimental methods that annotate protein function is still quite expensive, and also not 

easy, even impossible some times because of the limitation of experimental method. 

Meanwhile, computational method for protein function prediction is fast and relatively 

cheap compared with experimental method. One of the major problems for protein function 
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prediction is how to find new sources and integrate multiple sources of information to 

improve the accuracy of protein function prediction. With the help of The Critical 

Assessment of Function Annotation (CAFA) [7], which is an experiment designed for 

automated protein function annotation and blindly assess the progress of method 

development for protein function annotation, a large number of protein function prediction 

methods have been developed and blindly benchmarked. I develop a novel Statistical 

Multiple Integrative Scoring System (SMISS) for protein function prediction. It integrates 

the information based on probabilistic theory, including homologs found by PSIBLAST, 

protein-protein interaction networks, spatial gene-gene interaction networks derived from 

data by Hi-C technique described by previous section, and amino acid sequence 

information. This method is benchmarked and blindly tested on CAFA experiment and 

successfully predicts high accuracy protein functions. Chapter 3 describes details of this 

protein function prediction system SMISS, and it is mainly from the content of published 

paper as follows: 

R. Cao, J. Cheng. (2016). Integrated protein function prediction by mining function 

associations, sequences, and protein-protein and gene-gene interaction networks. 

Methods, 93:84-91. [2015 Impact factor: 3.645]. [8] 

 

1.3 Protein structure prediction 

Protein structure determines protein function, and plays an important role in our 

life. The traditional experimental techniques (e.g, X-ray crystallography and Nuclear 

magnetic resonance spectroscopy) to determine protein structure is time consuming and 
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expensive, sometime even cannot determine the structure. Because of that and widely use 

of next-generation sequencing techniques, the gap between sequenced protein and its 

native structure is still enlarging. This highlight the importance of computational method 

for protein structure prediction. There is a worldwide experiment called Critical 

Assessment of Techniques for Protein Structure Prediction (CASP) that blindly assess 

protein structure prediction methods every two years from 1994. During protein structure 

prediction, there are two major problems: model sampling and model ranking. The former 

problem is about how to generate a number of structural models. The latter problem is 

about how to select and rank predicted structural models without knowing the native 

structure, so-called protein model quality assessment. My dissertation mainly focus on 

solving the later problem. For the later problem, there are generally two kinds of methods 

to solve it. The first is single-model quality assessment method [9-15], which evaluate the 

quality of protein model without using other model’s information. The second is consensus 

method [16-18], which use the structural similarity between one model and other models 

to evaluate the quality of this model. Chapter 4 describes four single-model and consensus 

quality assessment methods, and compare the performance and characteristics of these two 

methods. The main content is coming from the following publication: 

R. Cao, Z. Wang, J. Cheng. (2014). Designing and evaluating the MULTICOM protein 

local and global model quality prediction methods in the CASP10 experiment. BMC 

Structural Biology, 14:13. [2014 Impact factor: 1.18].[9] 

Chapter 5 describes a novel single-model quality assessment method Qprob, which 

calculates protein model quality score based on probability density distribution of 11 
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features. Qprob is blindly tested on CASP11 and ranked as one of the top single-model 

quality assessment methods. The main content of this chapter is from the following 

publication: 

 R. Cao, J. Cheng. (2016). Protein single-model quality assessment by feature-based 

probability density functions. Scientific Reports, 6:23990, 2016. [2015 Impact factor: 

5.228].[19] 

Chapter 6 describes a novel single-model quality assessment method DeepQA, which 

utilizing 16 features describing the quality of a model from different perspectives, and use 

deep learning techniques for protein quality assessment. The main content of this chapter 

is from unpublished manuscript: 

R. Cao, D. Bhattacharya, J. Hou, J. Cheng. DeepQA: Improving the estimation of single 

protein model quality with deep belief networks.  Submitted. 

Chapter 7 focus on protein structure prediction method blindly tested on CASP11 as 

MULTICOM human group which uses a large-scale model quality assessment method. It 

was officially ranked third out of all 143 human and server predictors on CASP11. The 

main content of this chapter comes from the following publication: 

R. Cao, D. Bhattacharya, B. Adhikari, J. Li, J. Cheng. (2015). Large-Scale Model Quality 

Asessment for Improving Protein Tertiary Structure Prediction. 23rd International 

Conference on Intelligent Systems for Molecular Biology (ISMB), Bioinformatics. 

31(12):i116-i123. [2015 Impact factor: 4.98].[20] 

Chapter 8 describes the performance and analysis of our human tertiary structure predictor 

(MULTICOM) based on the massive integration of 14 diverse complementary quality 
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assessment methods that was successfully benchmarked in the 11th Critical Assessment of 

Techniques of Protein Structure prediction (CASP11). The main content is from the 

following publication: 

R. Cao, Bhattacharya, B. Adhikari, J. Li, J. Cheng. (2015). Massive integration of diverse 

protein quality assessment methods to improve template based modeling in CASP11. 

Proteins: Structure, Function, and Bioinformatics. DOI: 10.1002/prot.24924. [2015 

Impact factor: 2.63].[21] 
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Deciphering the association between gene function and spatial gene-gene 

interactions in 3D human genome conformation 

 

2.1 Abstract 

A number of factors have been investigated in the context of gene function prediction and 

analysis, such as sequence identity, gene expressions, and etc. However, three-dimensional 

(3D) conformation of the genome has not been tapped to analyse gene function, probably 

largely due to lack of genome conformation data until recently. We constructed the 

genome-wide spatial gene-gene interaction networks for three different human B-cells or 

cell lines from their chromosomal contact data generated by the Hi-C chromosome 

conformation capturing technique. We compared the function similarity of gene pairs that 

do not spatially interact and that have interactions. We found that genes that have strong 

spatial interactions tend to have highly similar function in terms of biological process, 

molecular function and cellular component of the Gene Ontology. And even though the 

level of gene-gene interactions generally has no or weak correlation with either sequential 

genomic distance or sequence identity between genes, the interacted genes with high 

function similarity tend to have stronger interactions, somewhat shorter genomic distance 

and significantly higher sequence identity. And combining genomic distance or sequence 

identity with spatial gene-gene interaction information informs gene-gene function 

similarity much better than using either one of them alone, suggesting gene-gene 
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interaction information is largely complementary with genomic distance and sequence 

identity in the context of gene function analysis. We developed and evaluated a new gene 

function prediction method based on gene-gene interacting networks, which can predict 

gene function well for a large number of human genes. 

2.2 Introduction 

As more and more genomes are sequenced, one urgent and important task in computational 

biology is to annotate and analyse the functions of the genes in a genome [22, 23]. A 

number of factors potentially related to gene function such as sequence identity, gene 

phylogenetic profiles, sequential genomic co-localizations, gene expressions, and protein-

protein interaction have been investigated in the context of gene function prediction and 

analysis [24-29]. However, another very important aspect of a genome, i.e. three-

dimensional (3D) conformation of the genome, which presumably plays an important role 

in organizing and regulating genes, has not been tapped to analyse gene function, probably 

largely due to lack of genome conformation data until recently.  

    Since the Hi-C technique [5] that can determine the genome-wide chromosomal 

interaction / contact data was invented in 2009, it has been applied to generate the large-

scale genome-wide chromosomal conformation data for a number of genomes such as 

human B-cells [30, 31], yeast [18], bacteria[32], and Arabidopsis[33], which provides 

valuable data for studying the relationships between spatial gene-gene interactions and 

gene function. Similar technique has also been applied to study the three-dimensional 

model of budding yeast and other species [34, 35].  
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    In this work, we analysed the intra- and inter-chromosomal interaction (contact) data of 

three different human malignant B-cell or cell lines (RL follicular lymphoma cell line (RL), 

primary tumor B-cells from an acute lymphoblastic leukaemia patient (ALL), and MHH-

CALL-4 B-acute lymphoblastic leukaemia cell line (Call4)) [30]  and one normal B-cell 

[5] captured by the Hi-C technique. From the Hi-C contact data, we generated the spatial 

gene-gene interactions for these cells or cell lines in order to investigate if the spatially 

interacting genes tend to have similar functions.  

We compared the function similarity of spatially interacting gene pairs and non-interacting 

gene pairs in  terms of three function categories of Gene Ontology [36] : Molecular 

Function (MF), Biological Process (BP) and Cellular Component (CC). Our analyses 

demonstrate that strongly interacting genes tend to have very similar function, and spatial 

gene-gene interaction is generally not or only weakly correlated with the sequential 

genomic distances between genes and with sequence identity between genes. However, 

strongly interacting genes with very similar function often have relative shorter average 

genomic distance and higher average sequence identity. Combining gene-gene interaction 

with either genomic distance or sequence identity can inform gene-gene function similarity 

better than either one of them. Furthermore, we developed a gene function prediction 

method based on spatial gene-gene interaction networks constructed from the Hi-C data. 

The method can rather accurately predict the function of a large number of genes based on 

their interaction with other genes, indicating the gene function prediction power of spatial 

gene-gene interaction information. 
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2.3 Methods 

2.3.1 Calculation of gene function similarity between two genes 

We used the Gene Ontology (GO) terms[36] to describe the function of a gene in 

three categories: Molecular Function (MF), Biological Process (BP) and Cellular 

Component (CC). We applied the online tool G-SESAME [37] and the python package 

FastSemSim [16] to calculate the functional similarity score between any two GO terms. 

The annotated functions of the human genes were retrieved from the Uniprot database [38]. 

We used the maximum function similarity score between the GO terms of two genes as the 

measure of the function similarity between them when we assessed the function similarity 

of interacted and non-interacting gene pairs. 

2.3.2 Construction of genome-wide spatial gene-gene interaction networks 

We downloaded the gene information (the start and end positions of the genes) of 

the human genome (build 36.3) from the NCBI website. We only considered the “GENE” 

entries without using other entries, such as “PSEUDO”, “RNA”, “CDS” and “UTR”. Based 

on the gene definitions, we constructed spatial gene-gene interaction networks from the 

Hi-C data of the Primary human B-acute lymphoblastic leukemia (ALL), the MHH-CALL-

4 B-ALL cell line (CALL4), and the follicular lymphoma cell-line (RL) sequenced using 

an Illumina HiSeq 2000 [30], as well as that of the normal human B-cell line (GM06990) 

[5] . 
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2.3.3 Calculation of sequence identity 

The dynamic programming technique is used to calculate the sequence identity of two 

protein sequences of a gene pair.  Given two protein sequences: 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑚)  and 

𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑛), we define the ith prefix of X as 𝑋𝑖 = (𝑥1, 𝑥2, … , 𝑥𝑖), i is in the range 

between 1 and m. The longest continuous / non-continuous common subsequence (LCS) 

of these two sequences (𝐿𝐶𝑆(𝑋, 𝑌)) is the longest subsequence which exists in both 

sequences. We define 𝑐[𝑖, 𝑗] to be the length of 𝐿𝐶𝑆(𝑋𝑖, 𝑌𝑗). The following recursive 

formula is used for calculating the length of 𝐿𝐶𝑆(𝑋𝑖, 𝑌𝑗): [39] 

 

𝑐[𝑖, 𝑗] =  {  

0,                                                         𝑖𝑓 𝑖 = 0 𝑜𝑟 𝑗 = 0                   

𝑐[𝑖 − 1, 𝑗 − 1]  + 1                          𝑖𝑓(𝑖, 𝑗 > 0 𝑎𝑛𝑑 𝑥𝑖 = 𝑦𝑗)      

max(𝑐[𝑖, 𝑗 − 1], 𝑐[𝑖 − 1, 𝑗])           𝑖𝑓(𝑖, 𝑗 > 0 𝑎𝑛𝑑  𝑥𝑖 ≠ 𝑦𝑗)     
 

    A m*n matrix is used to for storing 𝑐[𝑖, 𝑗].  𝑐[𝑚, 𝑛] contains the length of 𝐿𝐶𝑆(𝑋, 𝑌). 

We calculate the sequence identity of two protein sequences as 𝐿𝐶𝑆(𝑋, 𝑌) divided by the 

maximum sequence length of X and Y. 

    To make comparison, we also apply Needleman-Wunsch algorithm to align two 

sequences using BLOSUM62 as a substitution matrix, and calculate the sequence identity 

as the percentage of aligned part between these two sequences. 

 

2.3.4 Gene function prediction based on spatial gene-gene interaction networks 

The gene function prediction method has 5 steps: (1) calculating the probability of a GO 

term (GO1) for a gene given a known GO term (GO2) of its neighboring gene, i.e., P(a gene 
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has GO1 | the gene’s neighbor has GO2),  based on the entire interaction networks of the 

ALL B-cell; (2) For each gene on the interaction network of the Call4 cell line, randomly 

selecting one of its neighboring gene having function annotations; (3) Obtaining the GO 

terms of the selected neighboring gene; (4) For each GO term (Gi) of the neighboring gene, 

calculating the probability of other GO terms (Gj) for the target gene according to the 

conditional probability P(Gj | Gi) pre-computed in Step (1); and (5) summing up the 

probabilities of each GO term inferred for the target gene into frequencies and ranking the 

GO terms based on their frequencies as the predictions for the target gene.  

        Once one or more GO terms are predicted for a gene, we use FastSemSim to compute 

the similarity between each predicted GO term and each of the real GO term of the gene. 

The maximum similarity between a predicted GO term and a real GO term is considered 

as the accuracy (i.e. similarity score) of the prediction. 

2.4 Results and Discussion 

2.4.1 The spatial gene-gene interaction network for whole genome and thresholds 

for substantially interacting gene pairs 

We construct the gene-gene interaction network of the whole genome for the Hi-C 

data of three malignant B-cell / cell lines [30] and one normal B-cell [5]. A node and edge 

in the gene-gene interaction network represents the gene and spatial interaction between 

genes. In order to control the influence of the noisy chromosomal contacts in the Hi-C data, 

we consider that there existed a substantially interaction between two genes only if the 

number of chromosomal contacts observed between the two genes in the Hi-C data is 
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greater than a pre-defined threshold. The interaction between two genes is considered 

strong when the number of contacts between them is greater than the pre-defined threshold. 

Higher the contact number, stronger is the interaction.  

    Since the number of chromosomal contacts automatically increases with respect 

to the total number of Hi-C reads in a Hi-C data, we set different thresholds on the four Hi-

C datasets in order to make the number of the substantially interacting genes in these 

datasets largely the same. Actually, instead of using the number of nodes, similar threshold 

can be found on the four Hi-C datasets based on the number of edges in the interaction 

network. Figure 2.1A shows how the number of interacting genes in the spatial gene-gene 

interaction networks of the four Hi-C datasets changes with respect to the contact 

thresholds. The plot shows that the number of interacting genes / nodes decreases fast at 

the beginning and eventually levels off as the threshold increases. The decrease is most 

drastic on the spatial gene-gene interaction networks of the Normal B-Cell since the total 

Hi-C reads in its dataset is much smaller than the other three data sets. Assuming the 

number of interacting genes in the four interaction networks is similar, we set different 

thresholds on the datasets in order to select the same number of interacting genes in the 

Figure 2.1A. Table 2.1 reports the thresholds used on each dataset in order to obtain 

~7,000 or ~12,000 interacting genes, respectively. These two sets of thresholds are selected 

because they are the only two thresholds that can lead to the similar number of interacted 

genes in the four cells / cell lines. About 7,000 interacted genes can be found in all four 

cells / cell lines if the first threshold (the higher threshold) is used, and about 12,000 

interacted genes are obtained if the second threshold (the lower one) is applied. According 
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to Figure 2.1A, the number of interacting genes changes relatively faster at around the 

second threshold than at around the first threshold. So, the first threshold leads to a more 

stable gene-gene interacting network, which is used for all the analysis in this work.    

    Figure 2.1B illustrates the largest interacting gene cluster in the spatial gene-

gene interaction network for the Call4 at the interaction threshold 16. At this threshold, 

7,019 genes were found to interact, which is close to the level-off point of the curves of the 

three malignant cells / cell-lines in Figure 2.1A. All the genes that are connected by at least 

one path in the gene-gene interaction network are defined as a cluster. The cluster with 

largest number of genes is the largest cluster shown in the figure.  

 

 

Figure 2.1.  Visualization of gene-gene interaction network. Figure 2.1A is the plot of the 

numbers of interacted genes against interaction / contact thresholds for four cells / cell lines 

respectively. X-axis denotes the interaction thresholds and Y-axis the numbers of 

interacted genes found at the thresholds. Figure 2.1B is the visualization of the largest 
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cluster of the gene-gene interaction network for the Call4 cell line at interaction threshold 

16. The network was visualized by Cytoscape [40]. 

 

 ALL Call4 RL Normal-B 

Contact threshold 7 7 5 2 

Number of gene nodes 12581 11693 12882 12251 

Contact threshold 18 16 12 3 

Number of gene nodes 7191 7019 7119 7089 

 

Table 2.1. Contact thresholds and the corresponding numbers of interacted genes for the 

spatial gene-gene interaction networks constructed for four cells / cell lines. 

2.4.2 The function similarity of gene pairs that do not spatially interact and that 

have substantial interactions 

We compare the function similarity of gene pairs that substantially interacted (i.e., 

Hi-C contact number >= a predefined threshold) and that did not interact in terms of Gene 

Ontology (GO) function definitions. Figure 2.2 shows the histogram of the function 

similarity of non-interacting gene pairs and interacting gene pairs in the three GO 

categories (BP, CC, MF), respectively. The interacting gene pairs were selected from the 

genes that had >= 18 Hi-C contacts and the non-interacted pairs were the ones randomly 

selected that had no Hi-C contacts according to the Hi-C data of the ALL cell. The most 

obvious difference in the function distribution is that substantially more interacting genes 

had almost identical function (i.e. similarity bin 10 in the figure) than the non-interacting 

genes, while fewer interacting gene pairs fell into other function similarity bins than non-



36 

 

interacting gene pairs. This is the case for all three GO function categories, even though 

the level of the difference in the function similarity bin 10 is somewhat different. In order 

to identify the interacting genes with highly similar functions, we calculate the statistics of 

the number of spatial interactions for the gene falling into different function similarity bins. 

 

 

Figure 2.2. The histograms of gene function similarities of non-interacted gene pairs and 

substantially interacted gene pairs. Figure 2.2A, 2.2B, and 2.2C represent the histogram for 

Biological Process, Cellular Component, and Molecular Function respectively. 

2.4.3 The statistics of the number of interactions for substantially interacting gene 

pairs at each function similarity level 

Figure 2.3 shows the average number of observed chromosomal interactions for 

the gene pairs in each function similarity bin in each GO function category. It is very 

interesting to see that the average number of interactions between genes in function 

similarity Bins 1-9 is rather similar, while the average number of interactions for the genes 

in Bin 10 is much higher. The average numbers of interactions between genes in function 

similarity bins 9 and 10 for three function categories (BP, CC, MF) are (62.22, 775.12), 
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(46.54, 414.28), and (41.61, 835.80), respectively. According to the Welch two-sample t-

test, the p-value of the difference in the average numbers of interactions between bin 9 and 

bin 10 is less than 2.2e-16 for all three categories. This indicates that the interacting genes 

with almost identical functions are more strongly interacted than the rest of interacting gene 

pairs. In the other words, the strongly interacting genes tend to have almost identical 

function.  

    Since a few outliers (extremely large numbers) may skew the average number 

substantially, we also calculated the quantiles of the interaction numbers in the function 

similarity bins. Indeed, the genes in function similarity Bin 10 have substantially more 

interactions than genes in the other bins. For example, the median interaction number and 

the quantile at 75% in Bin 10 for Biological Process is 407 and 1187, which are much 

higher than 31.5 and 47.75 in Bin 9. Interestingly, the genes in the other bins except Bin 

10 seem to have similar median interaction numbers despite their different levels of 

function similarity. 
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Figure 2.3.  The average number of interactions between substantially interacted gene pairs 

within each functional similarity bin in three function categories. This is for the primary 

tumor B-cells (ALL). Figure 2.3A, 2.3B, and 2.3C represent the histogram for Biological 

Process, Cellular Component, and Molecular Function respectively. 

2.4.4 The sequential genomic distance for substantially interacting gene pairs at 

each function similarity level 

We gauge the relationship between the sequential genomic distances of interacting 

gene pairs in function similarities. Figure 2.4 (A, B, C) illustrates the average function 

similarity in each genomic location distance bin for Biological Process, Cellular 

Component and Molecular Function, respectively. Gene pairs are classified into ten bins 

based on their genomic location distance, and each bin has the same number of gene pairs. 

The gene pairs are substantially interacting genes (>= 18 Hi-C interactions) identified in 

the Hi-C data of the ALL cell. The genomic distance between two genes is the number of 

base pairs between their start locations. Since it is difficult to define the sequential genomic 

distance between genes on two different chromosomes, inter-chromosomal gene pairs were 

not considered in the calculation. The results show that gene pairs with short genomic 

distances usually have high function similarity. For example, gene pairs in the first three 

bins have high function similarity comparing with gene pairs in other bins for all three 

categories. Especially for Biological Process and Molecular Function, the function 

similarity of Bin 1(relatively in short genomic distance) is around two times higher than 

the function similarity of Bin 10. 
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    In order to reduce the influence of some genes with extremely large genomic 

distance, we generated the box plots for genomic distances in each function similarity bin 

for each function category. The result shows that the median genomic distance of all gene 

pairs with functional similarity score (< 0.9 in Bins 1-9) is longer than the ones with very 

high functional similarity score (>0.9 in Bin 10). For example, for biological process 

category, the median genomic distance in Bin 1 is 574,281 bp, longer than 72,312 bp in 

Bin 10; for the cellular component, the median genomic distance in Bin 1 is 458,991 bp, 

longer than 201,949 bp in Bin 10; and for the molecular function, the median genomic 

distance in Bin 1 is 565,609 bp, longer than 64,167.5 bp in Bin 10. In summary, the 

genomic distance can somewhat distinguish the interacting gene pairs with very high 

function similarity from the rest of interacted pairs. However, its effect is more pronounced 

on Biological Processes and Molecular Function than on Cellular Component.  

    Similarly, we calculated the genomic distances for 20,000 randomly selected 

gene pairs in 10 function similarity bins that did not spatially interact. In contrast to the 

interacting gene pairs, the median genomic distances are relatively close for non-

interacting gene pairs in different bins, and gene pairs in high function similarity bins do 

not always have minimum median genomic distances. Furthermore, the genomic distance 

of gene pairs with no interaction is relatively longer than substantially interacting gene 

pairs in different functional similarity bins. 
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Figure 2.4.  The average genomic distances of substantially interacted gene pairs in each 

functional similarity bin in three function categories. This is for the primary tumor B-cells 

(ALL). Figure 4A, 4B, and 4C represent the histogram for Biological Process, Cellular 

Component, and Molecular Function respectively. 

2.4.5 Sequence identity of substantially interacting genes at each function similarity 

level 

We assessed the relationship between sequence identity and function similarity for 

substantially interacting gene pairs (>=18 Hi-C contacts) in the Hi-C data of the ALL cell 

line. Figure 2.5 (A, B, C) illustrates the box plots of the sequence identity of gene pairs in 

10 function similarity bins for Biological Process, Cellular Component, and Molecular 

Function, respectively. The median sequence identity of gene pairs in Bin 10 (i.e. similarity 

score in [0.9, 1]) is generally higher than the rest bins, even though the difference is more 

pronounced for Biological Process and Molecular Function than Cellular Component. For 

Biological Process and Molecular Function, the median sequence identity in Bin 10 is 

about 0.6, and for Cellular Component, the median sequence identity of gene pairs in Bin 

10 is about 0.4. The median sequence identity in other 9 bins for each function category is 
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similar to each other and substantially lower than Bin 10, even though there are quite some 

outliers in Bin 10 that have very low sequence identity. Moreover, the sequence identity 

calculated by Needle-Wunsch algorithm is also included in the figure to make comparison 

with the one by dynamic programming technique. This figure shows that the average 

sequence identity in Bin 10 is much higher than most other bins for each category. 

Interestingly, the average sequence identity increases as the function similarity bin 

increases, and the average sequence identity in Bin 10 for each category is always relatively 

high. Therefore, the sequence identity could be a factor to predict if two interacting genes 

have very high functional similarity score (>= 0.9). The substantially high sequence 

similarity between interacting genes with high function similarity may be partially due to 

the duplicated genes that still maintain highly similar functions and are spatially close [41, 

42]. 

 

Figure 2.5.  The boxplot of gene sequence identity against function similarity in three GO 

categories. Figure 2.5A, 2.5B, and 2.5C represent the histogram for Biological Process, 

Cellular Component, and Molecular Function respectively. This figure is generated on the 
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gene-gene interaction network of the ALL B-cell constructed at interaction threshold 18. 

X-axis denotes the functional similarity scores / bins and Y-axis gene sequence identity. 

2.4.6 Identification of interacting genes with high function similarity with sequence 

identity, genomic distance, and interaction strength 

Since the special group of interacting genes with function similarity score >= 0.9 

tend to have higher sequence identity, shorter genomic distance, and stronger spatial 

interactions, we tested how these three factors could identify this group of genes.  

 The results shows that applying the thresholds on the three factors can identify 372 

– 398 common interacting gene pairs with high function similarity for each function 

category, while using each threshold can identify some gene pairs not recognized by 

another factor.  Applying sequence identity or genomic distance to interacting genes can 

identify more gene pairs with high function similarity than using interaction number, 

suggesting combining sequence identity or genomic distance with gene spatial interaction 

information could be more sensitive in identifying genes with high function similarity than 

using interaction information alone. In general, the substantial number of common gene 

pairs identified by each of the three factors demonstrates the convergence in the group of 

interacting genes with high function similarity and the distinct gene pairs found by each 

factor also suggests the complementarity of the three factors. 
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2.4.7 The relationship between sequence identity and function similarity for 

substantially interacting gene pairs and random non-interacting gene pairs 

Figure 2.6 plots function similarity against sequence identity of 7,987 interacting 

genes pairs with >= 18 Hi-C contacts (excluding ones without GO annotations) and 20,000 

randomly selected, non-interacting gene pairs in the gene-gene interaction network of the 

ALL cell line. For non-interacting gene pairs, the correlation between sequence identity 

and function similarity is very low, i.e., 0.02, 0.05, and 0.03 in three function categories 

(i.e. BP, CC, and MF). In contrast, for the substantially interacting gene pairs, the 

correlation score is much higher, i.e., 0.67, 0.41, and 0.70 for three function categories, 

respectively. In order to compare the function similarities of interacting genes and non-

interacting genes more rigorously, we also select non-interacting gene pairs by restricting 

their genomic distances are similar to the selected highly interacting gene pairs (within 

35bp). The function similarity against sequence identity for highly interacting gene pairs 

and random gene pairs with similar genomic distance for four cell/cell lines has been 

calculated. The correlation between sequence identity and function similarity for non-

interacting random gene pairs with the genomic distance restriction is higher than that of 

non-interacting random gene pairs without the genomic distance restriction, but is still 

lower than that of substantially interacting gene pairs. For example, the correlation between 

sequence identity and function similarity for these three gene groups in the ALL cell is 

0.37, 0.25, and 0.43 respectively. This suggest both genomic distance and spatial gene-

gene interaction between gene pairs affect the correlation between their sequence identity 
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and function similarity, and spatial gene-gene interaction further strengthens the 

correlation when the genomic distance between genes is similar.  

    Figure 2.7 plots the numbers of interactions of gene pairs against their sequence 

identities.  The top 20 points with extremely large number of interactions are removed. 

According to the plot, the number of interactions varies a lot when sequence identity is 

either around 0 or 1.  Indeed, the Pearson’s correlation between sequence identity and the 

number of interactions for all spatially interacting gene pairs is only 0.223.  

    The weak correlation between interaction numbers and sequence identity and the 

relatively strong function prediction power of considering both sequence identity and 

interaction numbers suggest that they are two rather independent factors informing the 

function similarity of two genes. In another words, genes with similar sequence more likely 

interact for the purpose of carrying out similar functions. 

 

Figure 2.6.  Plot of function similarity against sequence identify for substantially interacted 

gene pairs and non-interacted gene pairs. X-axis denotes the gene sequence identity and Y-

axis the gene function similarity in all three categories (BP, CC, MF), respectively. 
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Figure 2.7.  The sequence identity and the number of gene interactions. The number of 

interactions is normalized to the range of 0 to 1. The result is generated on the ALL gene-

gene network with >=1 interactions. X-axis denotes the sequence identity and Y-axis the 

normalized number of interactions. 
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2.4.8 The relationship among genomic distance, interaction numbers, and function 

similarity for interacting gene pairs 

Figure 2.8 is the 3D plot of genomic distance, number of interactions and function 

similarity for interacting gene pairs. Since it is impossible to calculate the genomic distance 

between inter-chromosomal gene pairs, the analysis in Figure 8 only considers intra-

chromosomal gene-gene interactions in order to calculate the genomic distance between 

the genes. According to Figures 2.8(A) and 2.8(C), although the number of interactions 

between genes generally increases as their genomic distance decreases, most of gene pairs 

with short genomic distance, but small number of interactions tend to have low function 

similarity in terms of biological process and molecular function. According to Figure 

2.8(B), for quite a few gene pairs with high function similarity (>0.9) in terms of cellular 

component, their genomic distance varies a lot when the number of interactions are small, 

however, when the number of interactions is large, their genomic distance is short. In order 

to consider the genomic distance for intra-chromosomal gene-gene interactions, we 

generated two new analyses by separating the gene pairs into two groups: short-range 

interaction pairs and long-range interaction pairs by using the median genomic distance 

between interacted gene pairs as threshold. Generally, the pattern regarding the 

relationships among function similarity, genomic distance and number of gene-gene 

interactions is similar to that in Figure 8. However, one interesting finding is that the 

relationship between genomic distance and function similarity somewhat differ for these 

two groups. For the gene pairs with genomic distance longer than the median, the function 

similarity clearly decreases as the increasing of genomic distance (see Figures 0.15A, 
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0.15B, and 0.15C), whereas no very clear such pattern has been found in gene pairs with 

short genomic distance (see Figures 0.15D, 0.15E, 0.15F). For the gene pairs with shorter 

genomic distance, the number of gene-gene interactions has more impact on function 

similarity than genomic distance. Taken together, the results suggest the complementarity 

of the two factors in informing gene function similarity. 

 

 

Figure 2.8.  The 3D plot of genomic distance, number of interactions and the function 

similarity in three function categories. Figure 2.8A, 2.8B, and 2.8C represent the histogram 

for Biological Process, Cellular Component, and Molecular Function respectively. The 

yellow dots represent long genomic distances and the red ones the opposite. 

2.4.9 Evaluation of gene function predictions based on spatial gene-gene 

interactions 

We developed a gene function prediction method based on spatial gene-gene 

interaction networks, which predicts the function of a gene using the known functions of 

its spatially interacted neighbours (see Methods section for details). We calculated the 

probabilistic relationship between GO terms of a gene and the GO terms of its neighbouring 

genes on the spatial interaction networks constructed from the Hi-C data of the ALL B-
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cell. The knowledge was applied to make gene function prediction on the Call4 cell-line. 

We generated networks with different interaction thresholds (>= 1, 2, 3, 4, 6, 8, 10, 12, 14, 

16) for the Call4 cell line. For the case of 0 threshold, which means there is no interaction 

between genes, our current function prediction method based on spatial gene-gene 

interaction cannot make any prediction. This means that our current function prediction 

method is limited on predicting the functions of the genes on the gene-gene interaction 

network, which could be expanded in the future to make function prediction using other 

information, such as gene sequence identity.  

    Figure 2.9 illustrates the histogram of the similarities between predicted 

functions and true functions of the tested genes. For all the thresholds, the similarity score 

of the predictions for the majority of tested genes were very high (>0.9). When the 

interaction threshold is set to the lowest number, i.e.1, at least one highly accurate function 

was predicted for ~9,000 genes, while much fewer genes had predictions with relative 

lower accuracy. This indicates that the prediction method is rather robust against the 

potential noise in the interaction data. As the interaction thresholds increased, the function 

predictions could be made for fewer genes as there were fewer interacting genes in the 

spatial gene interaction network. However, the percentage of genes having high accurate 

predictions (similarity score >0.9) is generally higher. For example, with interaction 

threshold 1, the number of genes having high accurate predictions (similarity score > 0.9) 

is 9142, and the number of genes having low accurate predictions (similarity score < 0.1) 

is 214; with interaction threshold 16, the number of genes having high accurate predictions 
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(similarity score > 0.9) is 1357, and the number of genes having low accurate predictions 

(similarity score < 0.1) is 33. 

    The number of GO function terms predicted for each gene also affects the 

sensitivity and specification of gene function prediction. Figure 2.10 shows the histograms 

of the maximum function similarity between predicted GO terms and true GO terms. Not 

surprisingly, as the number of GO term prediction increased, more and more genes got at 

least one highly similar GO function prediction. 
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Figure 2.9.  The histograms of function prediction accuracy (the maximum similarity 

scores between predicted GO terms and real GO terms) on the spatial gene-gene interaction 

networks of the Call4 cell line at different interaction thresholds 
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Figure 2.10.  The histograms of function prediction accuracies for different numbers (1 – 

10) of GO terms selected as predictions. 
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Integrated protein function prediction by mining function associations, sequences, 

and protein-protein and gene-gene interaction networks 

 

3.1 Abstract 

Protein function prediction is an important and challenging problem in 

bioinformatics and computational biology. Functionally relevant biological information 

such as protein sequences, gene expression, and protein-protein interactions has been used 

mostly separately for protein function prediction. One of the major challenges is how to 

effectively integrate multiple sources of both traditional and new information such as 

spatial gene-gene interaction networks generated from chromosomal conformation data 

together to improve protein function prediction. In this work, we developed three different 

probabilistic scores (MIS, SEQ, and NET score) to combine protein sequence, function 

associations, and protein-protein interaction and spatial gene-gene interaction networks for 

protein function prediction. The MIS score is mainly generated from homologous proteins 

found by PSI-BLAST search, and also association rules between Gene Ontology terms, 

which are learned by mining the Swiss-Prot database.  The SEQ score is generated from 

protein sequences. The NET score is generated from protein-protein interaction and spatial 

gene-gene interaction networks. These three scores were combined in a new Statistical 

Multiple Integrative Scoring System (SMISS) to predict protein function. We tested 
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SMISS on the data set of 2011 Critical Assessment of Function Annotation (CAFA). The 

method performed substantially better than three base-line methods and an advanced 

method based on protein profile-sequence comparison, profile-profile comparison, and 

domain co-occurrence networks according to the maximum F-measure. The web server of 

the method is available at: http://tulip.rnet.missouri.edu/profunc/. 

3.2 Introduction 

Protein function prediction is important for understanding life at the molecular level 

and therefore is highly demanded by biomedical research and pharmaceutical applications 

[43]. There are a large amount of sequence data generated by next generation sequencing 

every day, however, the annotation of the function of these sequences by experimental is 

still a big challenge because of the inherent difficulty and considerable expense [6]. In 

addition, some experiments in vitro may not faithfully reflect a protein’s activity in vivo 

[36]. Therefore, accurately predicting protein function from sequence using computational 

methods is a useful way to solve the problem at large scale and low cost. 

    A number of computational protein function prediction methods had been 

developed in the last few decades [2, 6, 44-49]. The most commonly used method is to use 

the tool Basic Local Alignment Search Tool (BLAST) [50] to search a query sequence 

against protein databases containing experimentally determined function annotations to 

retrieve the hits based on the sequence homology. The function of homologous hits is used 

as the prediction of the query sequence. Some of this kind of methods are GOtch [51], 

OntoBlast [52], and Goblet [53]. However, the prediction coverage of BLAST based 

methods may be low because BLAST is not sensitive enough to find many remote 
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homologous hits. Some other methods such as PFP [54] use profile-sequence alignment 

tool PSI-BLAST [50] to get more sensitive predictions.  

In addition to sequence homology, some methods use other information to predict 

protein function. In order to incorporate the prediction of functional residues into the 

prediction of protein function at the whole molecular level [21, 55], some methods predict 

protein function based on amino acid sequences [56, 57] . Some other methods make 

function prediction based on protein-protein interaction networks [12, 27, 44, 47, 58, 59] 

assuming that interacted proteins may share the similar function. Others make function 

prediction by using protein structure data [21, 49, 60], microarray gene expression data 

[61], or combination of several sources of information [62-65]. One of the biggest 

challenges of protein function prediction is how to obtain diverse relevant biological data, 

such as protein amino acid sequence, gene-gene interaction data, protein-protein 

interaction data, protein structure from multiple reliable sources efficiently, and how to 

integrate these biological data to make protein function prediction [66].  

Besides the development of function prediction methods, unbiased benchmarking 

of different method is also very important for the community to identify the strengths and 

weaknesses of different methods in order to develop more accurate function prediction 

methods. The Critical Assessment of Function Annotation (CAFA, 

http://biofunctionprediction.org/) is an experiment designed to provide such a large-scale 

assessment of protein function prediction methods, and it has benefited the whole 

community by involving a significant number of groups to blindly test their function 

prediction methods on the same set of proteins within a specific time frame [43], which 

http://biofunctionprediction.org/
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also provide a test ground for benchmarking new methods including our method developed 

in this work. During CAFA in 2011, 30 teams associated with 23 research groups 

participated in the effort, and several new methods have been developed to achieve high 

accuracy of protein function prediction [43]. For example, sequence-based function 

prediction methods PFP [54, 67] and ESG [68] from professor Kihara’s lab use PSI-

BLAST one time and recursively against the target sequence to get the hits for protein 

function prediction [69, 70],  method from the team Jones-UCL integrates a wide variety 

of biological information sources into a framework for protein function prediction [71], 

Argot2 combines the clustering process of GO terms dependent on their semantic 

similarities and a weighting scheme which assesses retrieved hits sharing a certain degree 

of biological features with the sequence to annotate for protein function prediction [72, 73], 

method GOstruct uses co-mention and bag-of-words features mined from the biomedical 

literature for protein structure prediction [74], PANNZER uses weighted k-nearest 

neighbour methods with statistical testing to maximize the reliability of a functional 

annotation [75], and MS-kNN method finds k-nearest neighbors of a query protein based 

on different types of similarity measures and predicts its function by weighted averaging 

of its neighbors' functions [76]. 

    In this work, we develop a novel Statistical Multiple Integrative Scoring System 

(SMISS) for protein function prediction. SMISS integrates the information from homologs 

found by PSI-BLAST, protein-protein interaction networks, spatial gene-gene interaction 

networks derived from chromosomal conformation capturing data, and amino acid 

sequence information, and calculates three different probability scores (MIS score, NET 
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score, and SEQ score) for each GO term based on these information, and makes function 

prediction based on the combination of these three scores. SMISS is a very open system, 

which can be easily expanded to include more biological information to enhance the 

accuracy of protein function prediction. 

    The rest of the paper is organized as follows. In the Method section, we describe 

how to calculate three different scores and integrate them to make protein function 

prediction. In the Results and Discussion section, we blindly test our method and compare 

it with three base-line methods and three network-based protein function prediction 

methods. In the Conclusion section, we summarize the work and discuss the direction of 

future work. 

3.3 Methods 

The SMISS (Statistical multiple integrative scoring system for protein function prediction) 

method uses three different scores: the MIS score (Multiple Integrated Score) which is 

calculated based on the PSI-BLAST hits and their GO terms inferred from the Swiss-Prot 

database by data mining techniques, the NET score (Network score) which is calculated 

from spatial gene-gene interaction networks and protein-protein interaction networks, and 

the SEQ score (Sequence score) which is calculated from the amino acid sequence of a 

query protein. We test three different predictors by combining these three scores in 

different ways. The first one is SMISS-predictor, which combines all three scores. The 

second one is MIS-predictor, which only use the MIS score. The third one is MIS-NET-

predictor, which combines the MIS score and the NET score. Figure 3.1 shows the overall 
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flowchart of our three predictors. We introduce the method to calculate each score in the 

following section. 

 

Figure 3.1.  The overall flowchart of our method. 
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3.3.1 MIS score 

The calculation of MIS score is different for two types of GO functions. For the 

first type, the MIS score is calculated from the PSI-BLAST results while searching against 

Swiss-Prot [77] database. The default setting of PSI-BLAST has been used with 3 iterations 

on Swiss-Prot databased released on Jul. 2010 for benchmark on CAFA1, the default e-

value threshold (i.e. 10) is applied for prediction, and the predictions with e-value larger 

than 0.01 are ignored since their confidence score is 0 based on formula (1). All the 

potential distantly homologous protein hits and their e-values are retrieved and stored. The 

e-value of each protein hit is converted into a probabilistic confidence score using the 

following formula: 

𝑆 =  
− log10 𝑡

200
− 0.01                                                                                               (1) 

    In this formula, t is the e-value of the protein, and S is the probabilistic 

confidence score. We constrain the confidence score to be in the range of 0 and 1. That is, 

the confidence score is set to 0 for all hits with e-value (t) larger than 0.01, and all hits with 

e-value less than e-202 have confidence score 1. Assuming that N protein hits have 

confidence score larger than 0, and 𝑃𝑖 is the number i protein (𝑖 ∈ [1, 𝑁]), we can get all 

gene ontology (GO) terms from the Swiss-Prot database for each 𝑃𝑖. The 𝑛𝑖 GO terms for 

𝑃𝑖 are denoted as 𝐺𝑖1, 𝐺𝑖2, …, 𝐺𝑖𝑛𝑖
. By applying formula (1), we can calculate the 

confidence score P(𝑃𝑖) of each GO term associated with 𝑃𝑖. The same confidence score is 

assigned to each GO term of 𝑃𝑖, such that P(𝐺𝑖𝑗) = P(𝑃𝑖), where 𝑗 ∈ [1, 𝑛𝑖]. Given the GO 

terms lists (𝐺𝑖𝑗) with the probabilistic confidence scores (P(𝐺𝑖𝑗)), we combine them to 
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generate a list of unique GO terms (𝐺′𝑘) and calculate the confidence scores (P(𝐺′𝑘)),  while 

𝑖 ∈ [1, 𝑁] , 𝑗 ∈ [1, 𝑛𝑖], and 𝑘 ≥ 0 as follows. Assuming the same GO term 𝐺𝑥 appears in 

the GO term lists of two different proteins i and j with confidence scores 𝑃𝑖(𝐺𝑥) and 𝑃𝑗(𝐺𝑥) 

respectively, the following formula is used to update the combined confidence score of the 

GO term 𝐺𝑥: 

𝑃(𝐺𝑥) = 1 − (1 − 𝑃𝑖(𝐺𝑥)) ∗ (1 − 𝑃𝑗(𝐺𝑥))                                                          (2) 

    We continuously update the confidence score of any two same GO terms existing 

in different proteins by formula (2), and it can be proved (details omitted) that the final 

confidence score for each GO term 𝐺𝑥 is: 𝑃(𝐺𝑥) = 1 − ∏ (1 − 𝑃𝑖(𝐺𝑥))
𝑖=𝑁
𝑖=1 , where 𝑃𝑖(𝐺𝑥) 

is the confidence score of the GO term 𝐺𝑥 in the ith protein (𝑃𝑖). After applying formula 

(2), we can finally get a list of unique GO terms  (𝐺′𝑘) with the calculated confidence score 

P(𝐺′𝑘).  

For the second type of GO terms, the MIS score is assigned as 1. The GO terms are 

inferred from the protein hits with confidence score 1. To infer the unobserved GO terms, 

we first apply Apriori algorithm [78] to mine the association rules from Swiss-prot 

database. Apriori algorithm is used for association rule mining in transaction database, and 

here we apply it to get the association rules for protein function prediction. First, we extract 

the GO function from the Swiss-prot database for each protein sequence. Assuming there 

are N different GO terms, G1 … GN, N is the total number of GO terms in the database, 

and each protein’s GO functions are considered as a transaction. Secondly, the apriori 

algorithm is used to generate the association rules, Gi, …, Gj => Gk, i, j, and k are all 

integers equal or less than N. In our case, that is the association rules between different GO 
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terms. There are two parameters for Apriori algorithm for us to tune: the minimum support 

and minimum confidence. To decide these two parameters, five cross validation techniques 

are used, while dividing all GO function transactions into five folds, four of them are used 

for training, and the other one for testing. The precision and recall are used to evaluate the 

performance. The minimum support is set to 0.05, and minimum confidence is set to 90 

based on the five cross validation result, while 51,512 association rules are generated. More 

details of tuning the parameters are included in the results and discussion section. Finally, 

after generating the association rules by data mining technique, we check all combination 

of GO terms with confidence 1, and apply the association rules mined from Swiss-prot 

database to infer more GO terms. The MIS score of all inferred GO terms are set as 1. In 

summary, the MIS score is calculated from PSI-BLAST results by formula (2), and is set 

as 1 for GO terms inferred by Apriori algorithm. 

3.3.2 NET score 

Protein-protein interaction networks and spatial gene-gene interaction networks have been 

used for generating the NET score. irefindex network [79] is used for generating 23 protein-

protein interaction networks of multiple species. irefindex provides an index of protein 

interactions available in a number of primary interaction databases, and we parse it for 22 

different species to get 22 protein-protein interaction networks, and one additional network 

for proteins in other species. The gene-gene interaction network [19] is generated from Hi-

C contact data of the normal B-cell [30]. We consider two genes are interacting when the 

total number of Hi-C contact between them is more than a contact threshold [30]. We want 

to mention that this gene-gene interaction network is used for proteins in Homo sapiens 
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that can be mapped to it. Otherwise, the 23 protein-protein interaction networks are used. 

Here, if two genes/proteins are connected in a network, their GO terms are assumed to 

interact. For any two interacted GO terms 𝐺𝑖 and 𝐺𝑗 from gene-gene/protein-protein 

interaction networks, we calculate the probability score between them for statistical 

analysis as follows: 

𝑃(𝐺𝑖|𝐺𝑗) =
𝐹(𝐺𝑖|𝐺𝑗)

∑ 𝐹(𝐺𝑖|𝐺𝑘)𝑘=𝑁
𝑘=1

                                                                                    (3) 

In formula (3), 𝐹(𝐺𝑖|𝐺𝑗) is the total number of interactions for the GO term 𝐺𝑗 interacting 

with GO term 𝐺𝑖. N is the total number of GO terms interacting with GO term 𝐺𝑖. We 

calculate the scores by this formula for all neighboring GO terms of each 23 protein-protein 

interaction networks and gene-gene interaction network, and store them for protein 

function prediction. Given a query sequence, first, we retrieve the protein hits lists with e-

values by PSI-BLAST for it. Second, we search each protein from the protein hits lists 

starting from lowest e-value until we find one which has GO functions. To predict the GO 

functions, we map the protein to our generated gene-gene interaction/protein-protein 

interaction networks. Given the protein is in Homo sapiens and the gene directing the 

production of it exists in our generated gene-gene interaction network, we use the gene-

gene interaction network to predict the GO functions, otherwise, the protein-protein 

interaction network for species of this protein is used for the function prediction. We store 

the MIS score of the selected mapped gene/protein as M_map. Thirdly, we obtain the 

neighbors of the mapped gene/protein in the networks, and get all GO terms 𝐺𝑘 from each 

neighbor gene/protein, while 𝑘 ∈ [1, 𝑁], and N is the total number of GO terms from all 
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neighbors. Finally, we generate all possible GO term neighbors 𝐺𝑁𝑙 for each GO term from 

the statistics calculated on the gene-gene interaction network / protein-protein interaction 

network. The probability score for each GO term neighbor 𝐺𝑁𝑙 is calculated as M_map 

times the score generated by applying formula (3) to the whole gene-gene/protein-protein 

interaction network between 𝐺𝑁𝑙 and 𝐺𝑘. We combine all GO term neighbors 𝐺𝑁𝑙 by 

formula (2), and generate the final GO term list. The final probability score for each GO 

term is the NET score. Here, 𝑙 ∈ [1, 𝑁𝑁], and NN is the total number of GO term 

neighbors. 

3.3.3 SEQ score 

We calculate the SEQ score from the protein sequence itself. We retrieve all protein 

sequences and the protein function GO terms in the Swiss-Prot database. We use a 5-

residue sliding window technique to divide each sequence into sequence fragment with a 

length of 5. The reason to use a length of 5 is because we want to include more GO terms 

and fragments smaller than or equal to 4 cannot represent the structural information 

accurately [80]. So given the protein sequence with length N, there are in total (N-5) 

sequence fragments. Let’s assume a protein has a number of GO function terms 𝐺𝑖, while 

𝑖 ∈ [1,𝑀],  and M is the total number of GO terms. The sequence of that protein can be 

divided into (N-5) sequence fragments, and for one specific sequence fragment 𝑆𝑗, the 

conditional probability of GO term 𝐺𝑖 inferred from it can be calculated in the following 

formula: 

𝑃(𝐺𝑖|𝑆𝑗) =
𝐹(𝑆𝑗)

(𝑁−5)
                                                                                               (4) 
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    N is the sequence length, and 𝐹(𝑆𝑗) is the frequency of the sequence fragment 𝑆𝑗 

extracted from the sequence by the 5-residue sliding window technique. The frequency 

could be more than one since one sequence fragment may exist more than one time in the 

protein sequence. Secondly, we calculate the probability of GO term 𝐺𝑖 inferred from 

sequence fragment 𝑆𝑗 for each sequence by applying formula (4). Thirdly, we combine all 

GO terms with the following formula when the same GO term 𝐺𝑖 inferred from the same 

sequence fragment 𝑆𝑗 in different sequence: 

𝑃(𝐺𝑖|𝑆𝑗) = 1 − (1 − 𝑃1(𝐺𝑖|𝑆𝑗)) ∗ (1 − 𝑃2(𝐺𝑖|𝑆𝑗))                                            (5) 

𝑃1(𝐺𝑖|𝑆𝑗) and 𝑃2(𝐺𝑖|𝑆𝑗) are the probability from the two different sequences. In the 

prediction phase, for each query protein sequence, we divide it into sequence fragment with 

5-residue sliding window technique, and for each sequence fragment, we search against 

the sequence fragment database built from the Swiss-Prot database by formula (5), and get 

all possible GO terms 𝐺𝑖 with the probability score 𝑃(𝐺𝑖). The formula (2) is used to 

combine all same GO terms from different sequence fragment. Finally, we generate a GO 

term list for the query protein sequence and the SEQ probability score for each GO term. 

3.3.4 Score combination 

We develop three different predictors with different combination of these three 

scores. The first predictor is SMISS-predictor that combines all three different GO term 

lists calculated from MIS, NET and SEQ scores respectively. The following formula is 

used to calculate the finally combined score for each GO term 𝐺𝑖: 
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𝑃(𝐺𝑖) = 1 − (1 −𝑊𝑀𝐼𝑆 ∗ 𝑃𝑀𝐼𝑆(𝐺𝑥)) ∗ (1 −𝑊𝑁𝐸𝑇 ∗ 𝑃𝑁𝐸𝑇(𝐺𝑥)) ∗ (1 −𝑊𝑆𝐸𝑄 ∗ 𝑃𝑆𝐸𝑄(𝐺𝑥))   

(6) 

𝑃𝑀𝐼𝑆(𝐺𝑥) is the MIS score of this GO term, 𝑃𝑁𝐸𝑇(𝐺𝑥) is the NET score of this GO 

term, 𝑃𝑆𝐸𝑄(𝐺𝑥) is the SEQ score of this GO term, 𝑊𝑀𝐼𝑆 is the weight for MIS score, 𝑊𝑁𝐸𝑇 

is the weight for NET score, and 𝑊𝑆𝐸𝑄 is the weight for SEQ score. We set the weight 0.5 

for MIS score, 0.22 for NET score, and 0.28 for SEQ score empirically, which is based on 

their accuracy on our local benchmark for each score. The second predictor is MIS-

predictor, which only uses the GO term list calculated by the MIS score. And the third 

predictor is MIS-NET-predictor, which generate two different GO term lists by calculating 

the MIS score and NET score, and finally combines these two GO term lists for the final 

prediction. The formula (6) is used to combine them while the 𝑃𝑆𝐸𝑄(𝐺𝑥) is set to 0 for MIS-

NET-predictor. 

3.3.5 Score scaling 

The combined scores may be hard to analyze and evaluate when several GO term 

predictions have very similar scores close to 1 or when there are no predictions with 

relatively high confidence score. In order to avoid the problem, the combined scores are 

rescaled. For all predicted GO terms of a query sequence, we rank them based on the 

confidence score. Each prediction gets a ranking 𝑅𝑖. A new score (𝑆 + 0.01 − 0.01 ∗ 𝑅𝑖) 

is assigned to all predictions. S is the initial score, S can be set as 1 or the max confidence 

score. In our method, we set it to 1. Two predictions with the same confidence score have 
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the same ranking. For the predictions with the non-positive scaled score, we reset the score 

to 0.01. 

3.4 Results and discussion 

3.4.1 Parameters in Apriori algorithm for calculating MIS score 

We apply data mining technique apriori algorithm to obtain more GO terms as the 

predictions. There are two parameters for the Apriori algorithm: minimum support and 

minimum confidence. Given a rule X => Y regarding two GO terms X and Y, the minimum 

support is the minimum probability of an arbitrary transaction (e.g. the set of GO terms of 

a protein) contains both X and Y, and the minimum confidence is a conditional probability 

that a transaction having X also contains Y. We use the five-fold cross-validation on the 

GO terms in the Swiss-Prot database to optimize the two parameters. The performance of 

using different values of minimum support and minimum confidence is shown in Table 

3.1. We first fix the minimum confidence at 60, and try different minimum support, and 

the multiplication of precision and recall is maximized when minimum support is 0.1, and 

it decreases as the minimum support increases. Then we increase the minimum confidence 

to 70, and try minimum support values less than 0.1, and the multiplication of precision 

and recall decreases as the minimum support increases. Another finding is that the 

minimum confidence actually does not influence the multiplication of precision and recall 

too much. For the same minimum support 0.1, with minimum confidence 60 and 70, the 

multiplication of precision and recall is 0.079669 and 0.079751 respectively. So we decide 

to try larger minimum confidence score, such as 90, and the result shows smaller minimum 
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support has better performance. The number of rules generating for different minimum 

support values such as 0.02, 0.03, 0.04 is 171817, 120114, 62707, 51356 respectively. 

Considering the computation complexity related to the number of rules and their similar 

performance, we finally set minimum support as 0.05 and minimum confidence as 90. 

Min support Min confidence Precision Recall Multiplication 

0.1 60 0.175247 0.454611 0.079669 

0.2 60 0.175762 0.294839 0.051821 

0.3 60 0.178529 0.240628 0.042959 

0.4 60 0.178 0.217349 0.038688 

0.5 60 0.180751 0.203954 0.036865 

0.6 60 0.184234 0.194982 0.035922 

0.7 60 0.185663 0.179099 0.033252 

0.8 60 0.187923 0.176552 0.033178 

0.9 60 0.191136 0.166148 0.031757 

1 60 0.193348 0.155527 0.030071 

0.02 70 0.189585 0.575122 0.109035 

0.03 70 0.19235 0.552382 0.10625 

0.05 70 0.19523 0.504344 0.098463 

0.1 70 0.193433 0.41229 0.079751 

0.15 70 0.19347 0.296692 0.057401 

0.1 80 0.205309 0.357896 0.073479 

0.15 80 0.206317 0.242143 0.049958 

0.02 90 0.218213 0.48637 0.106133 

0.03 90 0.219549 0.461519 0.101326 

0.04 90 0.220407 0.4356 0.096009 

0.05 90 0.221515 0.415496 0.092039 

0.06 90 0.221194 0.392394 0.086795 

0.07 90 0.221575 0.378077 0.083773 

0.08 90 0.22069 0.361477 0.079774 

0.09 90 0.219519 0.339378 0.0745 

0.1 90 0.219174 0.320815 0.070314 

0.15 90 0.223325 0.207827 0.046413 

 

Table 3.1. The precision, recall, and multiplication of precision and recall for different 

values of minimum support and confidence according to five-fold cross validation. 



67 

 

3.4.2 Prediction Performance 

We evaluate the performance of our method on CAFA1 datasets. CAFA released 

48,298 protein targets in total, and 436 of them whose function deposited in Swiss-Prot 

database are used for our evaluation. Different threshold from 1 to 0.01 decreased by 0.01 

is used as thresholds on predicted GO term scores. The predictions with confidence score 

higher than the threshold will be selected to compare with the true GO terms (threshold 

metric). Based on this metric, we evaluate the performance of MIS score and how the score 

scaling technique influences the performance. The precision and recall metrics are used to 

evaluate the performance of the prediction. Here, in evaluating the performance of our 

methods on CAFA1 datasets, all predicted and actual GO terms are propagated to the root 

of the Gene Ontology Directed Acyclic Graph (DAG). All the GO terms in the paths of 

predicted GO terms toward the root were considered as predicted GO terms, and all the 

GO terms present in the paths of the actual GO terms toward the root were considered as 

true GO terms. The overlapping GO terms between predicted and true GO terms are 

considered as correct predictions. The precision is calculated by the total number of correct 

predictions divided by the total number of predicted GO terms, and the recall is calculated 

by the total number of correction predictions divided by the total number of true GO terms. 

These two metrics are complementary to evaluate the performance of a method from 

different perspective. The result is shown in Figure 3.2A. We test two different score 

scaling techniques. One is scaled from 1, which sets the starting score to 1. Another is 

scaled from max, which sets the starting score to the maximum score among all predictions. 

Figure 3.2A shows that the MIS score gets similar precision for the recalls in the range of 
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0.5 and 0.75, but the precision drops drastically when the recall is larger than 0.75. That is 

because a lot of false-positive predictions are made at a low threshold. Comparing the two 

score scaling techniques, scaling from 1 has better performance with higher precision, and 

finally they both can reach a similar high recall 0.85. Comparing the MIS score with and 

without score scaling, they both can reach a high recall, but the one with score scaling can 

reach a higher precision, and the precision decreases more smoothly as recall increases. 

We calculate the maximum multiplication of precision and recall. MIS score with and 

without score scaling get 0.239 and 0.231 respectively, suggesting applying score scaling 

technique slightly improve the performance.  

    It is interesting to compare the performance of the MIS score and the SEQ score. 

Figure 3.2B demonstrates the performance difference of between the two scores. The SEQ 

score has relatively low precision because it usually makes more predictions and at the 

same time it can reach a relatively high recall for the same reason. And the SEQ scores 

with and without scaling techniques have similar performance. Figure 3.2C illustrates the 

performance of combining all three different scores by the SMISS predictor. The SMISS 

predictor outperforms the MIS predictor in both recall and precision. The SMISS can reach 

a very high recall probably because of the contribution of the SEQ score.  

Moreover, we compare the SMISS predictor with three standard baseline methods 

(Prediction57, Prediction58, and Prediction59) and three predictors (Prediction1, 

Prediction2, and Prediction 3) that integrates profile-sequence homology search, profile-

profile homology search and domain co-occurrence network [48]. Prior method is used for 

Prediction57, which selects 836 most frequent GO terms counted from the SwissProt 
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database for each target as prediction [48]. Prediction58 is based on BLAST method, which 

uses the tool BLAST [50] to search the target protein against groups of proteins for 

predictions [48]. The third baseline method for Prediction59 is GOtcha method [51], which 

generates the sum of the negative logarithm of the e-values resulted from the BLAST 

search (GOtcha I-Scores) as the confidence score for GO terms selection [48]. The result 

is shown in Figure 3.2B. The three predictors (Prediction1, Prediction2, and Prediction 3) 

perform better mostly than the standard baseline methods (Prediction57, Prediction58, and 

Prediction59). Although the precision of the SMISS predictor is not as high as other 

methods, it can reach a higher recall than other methods because it can make more GO 

term predictions. In order to balance both precision and recall, we use F-measure to 

compare these methods. The maximum F-measure of our SMISS predictor is 0.500, much 

higher than 0.269, 0.211, and 0.289 of Prediction57, Prediction58, and Prediction59. In 

addition, it is also higher than 0.347, 0.302, and 0.310 of Prediction1, Prediction2, and 

Prediction3 (See Figure 3.3). 

 

Figure 3.2.  The performance comparison for MIS, SEQ, and SMISS using scaled 

technique benchmarked on CAFA1. X-axis shows the recall of the prediction, and y-axis 

shows the precision of the prediction.  
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Figure 3.3.  The performance of our SMISS with three standard baseline method and three 

predictors from an automated three-level method. Prediction 57, 58, 59 is the standard 

baseline method, and Predictors 1, 2, 3 is three predictors from an automated three-level 

method. X-axis shows the recall for each predictor, and y-axis shows the precision for each 

predictor. 

3.4.3 Case study 

We randomly select few proteins whose function is released recently, and submit 

the query protein sequence in our protein function prediction website to test the usefulness 

of our method. We only keep the predictions which have confidence score more than 0.9, 

so that our prediction is not influenced by some random predictions which has low 
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confidence score. Table 3.2 shows the summary of PDB ids with their true functions and 

the protein function predictions by our methods used in case study. The first case is 4OPY, 

which is released at 05/20/2015, and the UniProtKB id is Q9AGJ5. This protein has four 

GO functions: GO:0030655, GO:0046677, GO:0008800, and GO:0016787. Our SMISS 

predictor successfully predict three of them (GO:0030655, GO:0046677, and 

GO:0008800), so that the precision is 1, and recall is 0.75. In addition to the three GO 

function predicted by SMISS predictor, the MIS predictor also predicts the function 

GO:0033251, which is considered as true while propagating the function GO:0016787 to 

the root. The MIS predictor predicts 12 functions in total for this protein, so that the 

precision is 0.33, and recall is 1. The MIS-NET predictor only predicts 8 functions, 

including all true prediction by MIS predictor, so the precision is 0.5, and recall is 1. The 

SMISS predictor actually makes more function predictions, but only few of them could 

have confidence score more than 0.9, since our combination process finally assigns high 

confidence score to the predictions which are predicted from different sources on 

consensus. The defect for SMISS predictor is that it sometimes misses few true predictions 

because of its high standard, for example, the function GO:0033251 is not assigned as 

confidence score more than 0.9 for SMISS predictor, but it is predicted by MIS and MIS-

NET predictor. The second case is 4O7V, which is released at 12/31/2014, and the 

UniProtKB is O57978. There are five GO functions: GO:0006164, GO:0006189, 

GO:0000166, GO:0004639, and GO:0005524.  The MIS predictor successfully predicts 

four of them (GO:0006164, GO:0006189, GO:0004639, and GO:0005524), missing the 

function GO:0000166. It makes 15 function predictions, so the precision is 0.27, and recall 
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is 0.80. The MIS-NET predictor has 14 function predictions for this protein, and three of 

them (GO:0006189, GO:0004639, and GO:0005524) are correct. The confidence score of 

GO:0006164 by MIS-NET predictor is not more than 0.9 since it is not found from the 

network, making the precision as 0.6, and recall as 0.21. The SMISS predictor combines 

the prediction from three different sources, so it also misses the function GO:0006164. It 

only makes three function predictions with confidence score more than 0.9, and 

successfully predicts the function GO:0006189, GO:0004639, and GO:0005524. The 

precision for SMISS predictor is 1, and recall is 0.60. Once we consider the F-measure, 

which is the multiplication of precision and recall, we can see that the F-measure for MIS, 

MIS-NET, and SMISS predictor is 0.22, 0.13, and 0.6 respectively. As is shown, the 

SMISS predictor combines different sources, even though it may miss some true functions, 

it is still very useful considering both precision and recall. The MIS and MIS-NET predict 

more functions with high confidence score, so that it can cover more true GO functions. 

PDB id True functions SMISS prediction/score MIS prediction/score MIS-NET prediction/score 

4OPY GO:0030655 
GO:0046677 

GO:0008800 

GO:0016787 

GO:0030655/1.00 
GO:0046677/1.00 

GO:0008800/1.00 

 

GO:0030655/1.00 
GO:0046677/1.00 

GO:0008800/0.99 

GO:0005886/0.98 
GO:0005576/0.97 

GO:0042597/0.96 

GO:0033251/0.95 
GO:0033250/0.95 

GO:0008360/0.94 

GO:0009252/0.94 
GO:0006508/0.94 

GO:0009002/0.94 

GO:0030655/1.00 
GO:0046677/1.00 

GO:0008800/1.00 

GO:0005886/0.99 
GO:0005576/0.98 

GO:0042597/0.97 

GO:0033251/0.96 
GO:0033250/0.96 
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4O7V GO:0006164 

GO:0006189 
GO:0000166 

GO:0004639 

GO:0005524 

GO:0006189/1.00 

GO:0004639/1.00 
GO:0005524/1.00 

 

GO:0006189/1.00 

GO:0004639/1.00 
GO:0005524/1.00 

GO:0004638/0.99 

GO:0034023/0.99 
GO:0005829/0.98 

GO:0006144/0.97 

GO:0006164/0.96 
GO:0009113/0.95 

GO:0005737/0.94 

GO:0004357/0.93 
GO:0006163/0.93 

GO:0005634/0.92 

GO:0016020/0.91 
GO:0000082/0.90 

GO:0006189/1.00 

GO:0004639/1.00 
GO:0005524/1.00 

GO:0005737/0.99 

GO:0005829/0.98 
GO:0016020/0.97 

GO:0003735/0.96 

GO:0006412/0.96 
GO:0005886/0.95 

GO:0003677/0.94 

GO:0006351/0.93 
GO:0019843/0.92 

GO:0008270/0.91 

GO:0046872/0.90 

 

Table 3.2. Summary of PDB ids with their true functions and the protein function 

predictions by our methods for case study. 

3.5 Conclusion 

In this work, we develop a novel protein function prediction system - SMISS. 

SMISS integrates information from different sources to improve protein function 

prediction. Given a protein sequence, it generates a list of Gene Ontology (GO) function 

terms based on the known function annotations of the homologous proteins found by PSI-

BLAST. The set of GO terms is then expanded according to the association rules between 

GO terms learned by mining the Swiss-Prot database, and then the GO terms are further 

augmented by the function annotations of the neighboring proteins or genes found in 

protein-protein interaction networks and the novel spatial gene-gene interaction networks 

of the human genome constructed from the Hi-C chromosomal conformation data of the 

genome. Finally, the protein sequence is cut into sequence fragments with a length of 5, 

and more GO terms are predicted from these fragments. The information is measured by 

three different probabilistic scores (MIS, SEQ, and NET score) respectively and is 

combined by SMISS for protein function prediction. Based on the test on the protein targets 
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in the 2011 Critical Assessment of Function Annotation (CAFA), SMISS performs better 

than the baseline methods and other methods of combining profile-sequence search, 

profile-profile search, and domain co-occurrence networks. SMISS is an open system, 

which can combine the information from other sources not used in this work. Our future 

direction is to expand our current system to include other information such as gene 

expression and genomic location information, and also improve the current method, for 

example, control potential degeneration of created profiles in PSI-BLAST to improve the 

MIS score, and search better weight to combine different scores to improve the method. 
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Designing and evaluating the MULTICOM protein local and global model quality 

prediction methods in the CASP10 experiment 

  

4.1 Abstract 

Protein model quality assessment is an essential component of generating and using 

protein structural models. During the Tenth Critical Assessment of Techniques for Protein 

Structure Prediction (CASP10), we developed and tested four automated methods 

(MULTICOM-REFINE, MULTICOM-CLUSTER, MULTICOM-NOVEL, and 

MULTICOM-CONSTRUCT) that predicted both local and global quality of protein 

structural models. MULTICOM-REFINE was a clustering approach that used the average 

pairwise structural similarity between models to measure the global quality and the average 

Euclidean distance between a model and several top ranked models to measure the local 

quality. MULTICOM-CLUSTER and MULTICOM-NOVEL were two new support vector 

machine-based methods of predicting both the local and global quality of a single protein 

model. MULTICOM-CONSTRUCT was a new weighted pairwise model comparison 

(clustering) method that used the weighted average similarity between models in a pool to 

measure the global model quality. Our experiments showed that the pairwise model 

assessment methods worked better when a large portion of models in the pool were of good 

quality, whereas single-model quality assessment methods performed better on some hard 

targets when only a small portion of models in the pool were of reasonable quality. Since 
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digging out a few good models from a large pool of low-quality models is a major challenge 

in protein structure prediction, single model quality assessment methods appear to be 

poised to make important contributions to protein structure modeling. The other interesting 

finding was that single-model quality assessment scores could be used to weight the models 

by the consensus pairwise model comparison method to improve its accuracy. 

4.2 Introduction 

Predicting protein tertiary structure from amino acid sequence is of great 

importance in bioinformatics and computational biology [81, 82]. During the last few 

decades, a lot of protein tertiary structure prediction methods have been developed. One of 

them is template-based methods [44, 83-86], which use known experimentally determined 

structures as templates, and build structural models for a target protein without known 

structure. Another of them is template-free methods [8, 87], which do not use a structural 

template, and fold a protein from scratch. The two kinds of methods were often combined 

to handle a full spectrum of protein structure prediction problems ranging from relatively 

easy homology modeling to hard de novo prediction [9, 88-90].  

During protein structure prediction, one important task is to assess the quality of 

structural models produced by protein structure prediction methods. A model quality 

assessment (QA) method employed in a protein structure prediction pipeline is critical for 

ranking, refining, and selecting models [83]. A model quality assessment method can 

generally predict a global quality score measuring the overall quality of a protein structure 

model and a series of local quality scores measuring the local quality of each residue in the 

model. A global quality score can be a global distance test (GDT-TS) score [91-93] that is 
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predicted to be the structural similarity between a model and the unknown native structure 

of a protein. A local quality score of a residue can be the Euclidean distance between the 

position of the residue in a model and that in the unknown native structure after they are 

superimposed. 

In general, protein model quality assessment methods can be classified into two 

categories: multi-model methods [70, 94-97] and single-model methods [13-17]. Multi-

model methods largely use a consensus or clustering approach to compare one model with 

other models in a pool of input models to assess its quality. Generally, a model with a 

higher similarity with the rest of models in the pool receives a higher global quality score. 

The methods tend to work well when a large portion of models in the input pool are of 

good quality, which is often the case for easy to medium hard template-based modeling. 

Multi-model methods tend to work particularly well if a large portion of good models were 

independently generated by a number of independent, diverse protein structure prediction 

methods as seen in the CASP (the Critical Assessment of Techniques for Protein Structure 

Prediction) experiments, but they worked less well when being applied to the models 

generated by one single protein structure prediction method because they prefer the average 

model of the largest model cluster in the model pool. And multi-model methods tend to 

completely fail if a significant portion of low quality modes are similar to each other and 

thus dominate the pairwise model comparison as seen in some cases during the 10th CASP 

experiment (CASP10) held in 2012. Single-model methods strive to predict the quality of 

a single protein model without consulting any other models [41, 73, 98-100]. Despite the 

performance of single-model methods is still lagging behind the multi-model methods in 
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most cases when most models in the pool of good quality [101, 102], because of their 

capability of assessing the quality of one individual model, they have potential to address 

one big challenge in protein structure modeling – selecting a model of good quality from a 

large pool consisting of mostly irrelevant models. Furthermore, as the performance of 

multi-model quality assessment methods start to converge, single-model methods appear 

to have a large room of improvement as demonstrated in the CASP10 experiment. 

In order to critically evaluate the performance of multi-model and single-model 

protein model quality assessment methods, the CASP10 experiment was designed to assess 

them in two stages. On Stage1, 20 models of each target spanning a wide range of quality 

were used to assess the sensitivity of quality assessment methods with respect to the size 

of input model pool and the quality of input models. On Stage2, about top 150 models 

selected by a naïve consensus model quality assessment method were used to benchmark 

model quality assessment methods’ capability of distinguishing relatively small differences 

between more similar models. The new settings provided us a good opportunity to assess 

the strength and weakness of our multi-model and single-model protein model quality 

assessment methods in terms of accuracy, robustness, consistency and efficiency in order 

to identify the gaps for further improvement.  

The rest of the paper is organized as follows. In the Result and Discussion section, 

we analyze and discuss their performance on the CASP10 benchmark. In the Conclusion 

section, we summarize this work and conclude it with the directions of future work. In the 

Method section, we introduce the methods in our protein model quality assessment servers 

tested in CASP10. 
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4.3 Methods 

4.3.1 Protein Model Quality Prediction Methods 

The methods used by the four automated protein model quality assessment servers 

are briefly described as follows. 

MULTICOM-REFINE is a multi-model quality assessment method using a 

pairwise model comparison approach (APOLLO)[103] to generate global quality scores. 

The 19 top models based on the global quality scores and the top 1 model selected by 

SPICKER[104] formed a top model set for local quality prediction. After superimposing a 

model with each model in the top model set, it calculated the average absolute Euclidean 

distance between the position of each residue in the model and that of its counterpart in 

each model in the top model set. The average distance was used as the local quality of each 

residue. 

MULTICOM-CLUSTER is a single-model, support vector machine (SVM)-

based method initially implemented in [99]. The input features to the SVM include a 

window of amino acids encoded by a 20-digit vector of 0 and 1 centered on a target residue, 

the difference between secondary structure and solvent accessibility predicted by 

SCRATCH[105] from the protein sequence and that of a model parsed by DSSP[106], and 

predicted contact probabilities between the target residue and its spatially neighboring 

residues. The SVM was trained to predict the local quality score (i.e. the Euclidean distance 

between its position in the model and that in the native structure) of each residue. The 

predicted local quality scores of all the residues was converted into the global quality score 

of the model according to the formula[107] as follows: 
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𝐺𝑙𝑜𝑏𝑎𝑙 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 =
1

𝐿
∑ (

1

1+(
𝑆𝑖
𝑇
)2
)𝑡

𝑖=1 . 

In the formula, L is the total number of residues, Si is the local quality score of 

residue i, and T is a distance threshold set to set to 5 Angstrom. Residues that did not have 

a predicted local quality score were skipped in averaging. 

MULTICOM-NOVEL is the same as MULTICOM-CLUSTER except that amino 

acid sequence features were replaced with the sequence profile features. The multiple 

sequence alignment of a target protein used to construct profiles was generated by PSI-

BLAST[50].  

MULTICOM-CONSTRUCT uses a new, weighted pairwise model evaluation 

approach to predict global quality. It uses ModelEvaluator [108] – an ab initio single-model 

global quality prediction method – to predict a score for each model and TM-score to get 

the GDT-TS score for each pair of models. The predicted global quality score of a model i 

is the weighted average GDT-TS score between the model and other models, calculated 

according to the formula: Si = ∑ (Xi,j*
Wj

∑ Wj
N
j=1

) N
j=1 . In this formula, 𝑆𝑖 is the predicted global 

quality score for model 𝑖, 𝑁 is the total number of models, 𝑋𝑖,𝑗 is the GDT-TS score 

between model 𝑖 and model 𝑗, 𝑊𝑗 is the score for model 𝑗 predicted by ModelEvaluator, 

which is used to weight the contribution of 𝑋𝑖,𝑗 to 𝑆𝑖. In case that no score was predicted 

for a model by ModelEvaluator, the weight of the model is set to the average of all the 

scores predicted by ModelEvaluator. The local quality prediction of MULTICOM-

CONSTRUCT is the same as MULTICOM-NOVEL except that additional SOV (segment 
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overlap measure of secondary structure) score features were used by the SVM to generate 

the local quality score. 

4.3.2 Evaluation Methods 

CASP10 used two-stage experiments to benchmark for model quality assessment. 

Stage1 had 20 models with different qualities for each target, and Stage2 had 150 top 

models for each target selected from all the models by a naïve pairwise model quality 

assessment method. We download the native structures of 98 CASP10 targets, their 

structural models, and the quality predictions of these models made by our four servers 

during the CASP10 experiment running from May to August, 2012 from the CASP website 

(http://predictioncenter.org/casp10/index.cgi).  

We used TM-score[107] to calculate the real GDT-TS scores between the native 

structures and the predicted model as their real global quality scores. The predicted global 

quality scores of our four servers were used to compare with the real global quality scores. 

In order to calculate real local quality scores of residues in a model, we first used TM-score 

to superimpose the native structure and the model, and then calculate the Euclidean 

distance between each residue’s coordinates in the superimposed native structure and the 

model as the real local quality score of the residue. The real local and global quality scores 

of a model were compared with that predicted by the model quality assessment methods to 

evaluate their prediction accuracy.  

We evaluated the global quality of our predictions from five aspects: the average 

of per-target Pearson correlations, the overall Pearson’s correlation, average GDT-TS loss, 

the average Spearman’s correlation, and the average Kendall tau correlation.  The average 

http://predictioncenter.org/casp10/index.cgi
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of per-target Pearson’s correlations is calculated as the average of all 98 targets’ Pearson 

correlations between predicted and real global quality scores of their models. The overall 

Pearson’s correlation is the correlation between predicted and real global quality scores of 

all the models of all the targets pooled together.  The average GDT-TS loss is the average 

difference between the GDT-TS scores of the real top 1 model and the predicted top 1 

model of all targets, which measures how well a method ranks good models at the top. The 

Spearman’s correlation is the Pearson’s correlation of the ranked global quality scores. In 

order to calculate the Spearman’s rank correlation, we first convert the global quality scores 

into the ranks. The identical values (rank ties or duplicate values) are assigned a rank equal 

to the average of their positions in the rank list. And then we calculate the Pearson’s 

correlation between the predicted ranks and true ranks of the models. The Kendall tau 

correlation is the probability of concordance minus the probability of discordance. For two 

vectors x and y with global quality scores of n models of a target, the number of total 

possible model pairs for x or y is N = 
𝑛∗(𝑛−1)

2
.  The number of concordance is the number 

of pairs (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗) when (𝑥𝑖 − 𝑥𝑗) ∗ (𝑦𝑖 − 𝑦𝑖) > 0, and the number of discordance 

is the number of pairs (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗) when (𝑥𝑖 − 𝑥𝑗) ∗ (𝑦𝑖 − 𝑦𝑖) < 0. The Kendall tau 

correlation is equal to the number of concordance minus the number of discordance divided 

by N. (http://en.wikipedia.org/wiki/Kendall_tau_rank_correlation_coefficient).  

The accuracy of local quality predictions was calculated as the average of the 

Pearson’s correlations between predicted local quality scores and real local quality scores 

of all the models of all the targets. For each model, we used TM-score to superimpose it 

with the native structure, and then calculated the Euclidean distance between Ca atom’s 
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coordinates of each residue in a superimposed model and the native structure as the real 

local quality score of each residue. The Pearson’s correlation between the real quality 

scores and the predicted ones of all the residues in each model was calculated. The average 

of the Pearson’s correlations of all the models for all 98 targets was used to evaluate the 

performance of the local quality prediction methods. 

4.4 Results and Discussions 

4.4.1 Results of global quality predictions 

The results of the global quality evaluation on Stage1 of CASP10 are shown in 

Table 4.1. We evaluate the global quality in five aspects, and the details for each evaluation 

methods are described in the evaluation methods part. As shown in the table, the weighted 

pairwise model comparison method MULTICOM-CONSTRUCT performed best among 

all the four servers according to all the five measures, suggesting using single-model 

quality prediction scores as weights can improve the multi-model pairwise comparison 

based quality prediction methods such as MULTICOM-REFINE. The two multi-model 

global quality assessment methods had the better average performance than the two single-

model global quality assessment methods (MULTICOM-NOVEL and MULTICOM-

CLUSTER) on average on Stage1, suggesting that the advantage of multi-model methods 

over single-model methods was not much affected by the relatively small size of input 

models (i.e. 20). Instead, the multi-model methods still work reasonably well on a small 

model pool that contains a significant portion of good quality models. It is worth noting 

that the average loss of the two single-model quality assessment methods (MULTICOM-
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CLUSTER and MULTICOM-NOVEL) is close to that of the two multi-model quality 

assessment methods (MULTICOM-REFINE and MULTICOM-CONSTRUCT) (i.e. +0.07 

versus +0.06). To make comparison with other methods, we also add the global quality of 

the naive consensus method DAVIS-QAconsensus, Pcons, and ModFOLDclust2 on Stage1 

of casp10. As we can see in the table, our MULTICOM-CONSTRUCT performs better 

than the naive consensus method DAVIS-QAconsensus and ModFOLDclust2 on Stage1 

of casp10 based on our evaluation, and Pcons performs best among all methods. 

Table 4.2 shows the global quality evaluation results on Stage2.  Similarly as in 

Table 4.1, the weighted pairwise comparison multi-model method (MULTICOM-

CONSTRUCT) performed better than the simple pairwise multi-model method 

(MULTICOM-REFINE) and both had better performance than the two single-model 

quality assessment methods (MULTICOM-CONSTRUCT and MULTICOM-NOVEL). 

That the two single-model quality prediction methods yielded the similar performance 

indicated that some difference in their input features (amino acid sequence versus sequence 

profile) did not significant affect their accuracy. In comparison with Stage1, all the methods 

performed worse on Stage2 models. Since the models in Stage2 are more similar to each 

other than in Stage1 in most cases, the results may suggest that both multi-model and 

single-model quality assessment methods face difficulty in accurately distinguishing 

models of similar quality. In addition, the performance of naive consensus method DAVIS-

QAconsensus, Pcons, and ModFOLDclust2 is also available in the table. Our 

MULTICOM-CONSTRUCT gets similar performance comparing with DAVIS-
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QAconsensus and Pcons, and has higher average correlation than ModFOLDclust2 on 

Stage2 based on our evaluation. 

 

Stage1 of CASP10 Ave. Corr. Over. Corr. Ave. loss Ave. Spearman Ave. Kendall 

MULTICOM-REFINE 0.6494 0.8162 0.0615 0.5989 0.4908 

MULTICOM-CLUSTER  0.5144 0.5946 0.0727 0.4364 0.3273 

MULTICOM-NOVEL 0.5016 0.4848 0.0791 0.4483 0.3380 

MULTICOM-CONSTRUCT 0.6838 0.8300 0.0613 0.6182 0.5043 

DAVIS-QAconsensus 0.6403 0.7927 0.0537 0.5798 0.4745 

Pcons 0.7501 0.7683 0.0327 0.6781 0.5457 

ModFOLDclust2 0.6775 0.8301 0.0572 0.6206 0.5064 

 

Table 4.1. The average correlation (Ave. Corr.), overall correlation (Over. Corr.), average 

GDT-TS loss (Ave. loss), average Spearman’s correlation (Ave. spearman), average 

Kendall tau correlation (Ave. Kendall) of MULTICOM servers, DAVIS-QAconsensus, 

Pcons, and ModFOLDclust2 on Stage1 of CASP10. 

 

Stage2 of CASP10 Ave. Corr. Over. Corr. Ave. loss Ave. Spearman Ave. Kendall 

MULTICOM-REFINE 0.4743 0.8252 0.0511 0.4763 0.3510 

MULTICOM-CLUSTER 0.3354 0.6078 0.0675 0.3361 0.2343 

MULTICOM-NOVEL 0.3350 0.5057 0.0654 0.3394 0.2358 

MULTICOM-CONSTRUCT 0.4853 0.8272 0.0510 0.4824 0.3566 

DAVIS-QAconsensus 0.5050 0.8383 0.0499 0.5031 0.3686 

Pcons 0.4891 0.8194 0.0416 0.4843 0.3524 

ModFOLDclust2 0.4489 0.8337 0.0470 0.4621 0.3393 
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Table 4.2. The average correlation, overall correlation, average GDT-TS loss, average 

Spearman’s correlation, average Kendall tau correlation of MULTICOM servers, DAVIS-

QAconsensus, Pcons, and ModFOLDclust2 on Stage2 of CASP10. 

 

Table 4.1 and Table 4.2 show there is some difference of our four quality 

assessment servers. We calculate the wilcoxon signed ranked sum test between all our four 

servers and our servers against other three methods (DAVIS-QAconsensus, Pcons, and 

ModFOLDclust2) on Stage1 and Stage2, and the result is shown in Table 4.3. As we can 

see in the table, on Stage1, there are two pairs of servers with the P-value greater than 0.01:  

MULTICOM-REFINE and MULTICOM-CONSTRUCT, MULTICOM-CLUSTER and 

MULTICOM-NOVEL. It shows that the difference of average correlation between these 

two pairs of servers on Stage1 is not statistically significant. However, on Stage2, only the 

difference of average correlation between MULTICOM-CLUSTER and MULTICOM-

NOVEL is larger than 0.01, all other pairs are less than 0.01. Our server MULTICOM-

CLUSTER and MULTICOM-NOVEL have P-value less than 0.01 against other three 

methods on both Stage1 and Stage2, which shows that the difference of average correlation 

between these two servers and other three methods is statistically significant on both Stage1 

and Stage2. 

 

MULTICOM servers, DAVIS-QAconsensus, Pcons, and ModFOLDclust2 on Stage1 or Stage2 P-value 

MULTICOM-REFINE and MULTICOM-CLUSTER on Stage1 7.552e-05 

MULTICOM-REFINE and MULTICOM-NOVEL on Stage1 3.280e-05 

MULTICOM-REFINE and MULTICOM-CONSTRUCT on Stage1 0.031 
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MULTICOM-CLUSTER and MULTICOM-NOVEL on Stage1 0.201 

MULTICOM-CLUSTER and MULTICOM-CONSTRUCT on Stage1 3.757e-06 

MULTICOM-NOVEL and MULTICOM-CONSTRUCT on Stage1 7.013e-07 

MULTICOM-REFINE and Pcons on Stage1 0.1723 

MULTICOM-REFINE and ModFOLDclust2 on Stage1 0.578 

MULTICOM-REFINE and DAVIS-QAconsensus on Stage1 0.6238 

MULTICOM- CLUSTER and Pcons on Stage1 2.872e-08 

MULTICOM- CLUSTER and ModFOLDclust2 on Stage1 5.517e-05 

MULTICOM- CLUSTER and DAVIS-QAconsensus on Stage1 0.002873 

MULTICOM- NOVEL and Pcons on Stage1 5.65e-09 

MULTICOM- NOVEL and ModFOLDclust2 on Stage1 2.116e-05 

MULTICOM- NOVEL and DAVIS-QAconsensus on Stage1 0.002066 

MULTICOM- CONSTRUCT and Pcons on Stage1 0.7492 

MULTICOM- CONSTRUCT and ModFOLDclust2 on Stage1 0.01223 

MULTICOM- CONSTRUCT and DAVIS-QAconsensus on Stage1 0.0002211 

MULTICOM-REFINE and MULTICOM-CLUSTER on Stage2 4.133e-05 

MULTICOM-REFINE and MULTICOM-NOVEL on Stage2 3.180e-05 

MULTICOM-REFINE and MULTICOM-CONSTRUCT on Stage2 2.439e-05 

MULTICOM-CLUSTER and MULTICOM-NOVEL on Stage2 0.658 

MULTICOM-CLUSTER and MULTICOM-CONSTRUCT on Stage2 7.75e-06 

MULTICOM-NOVEL and MULTICOM-CONSTRUCT on Stage2 5.276e-06 

MULTICOM-REFINE and Pcons on Stage2 0.2465 

MULTICOM-REFINE and ModFOLDclust2 on Stage2 0.08742 

MULTICOM-REFINE and DAVIS-QAconsensus on Stage2 0.4976 

MULTICOM- CLUSTER and Pcons on Stage2 1.114e-05 

MULTICOM- CLUSTER and ModFOLDclust2 on Stage2 0.001202 

MULTICOM- CLUSTER and DAVIS-QAconsensus on Stage2 7.495e-06 

MULTICOM- NOVEL and Pcons on Stage2 1.073e-05 

MULTICOM- NOVEL and ModFOLDclust2 on Stage2 0.001128 
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MULTICOM- NOVEL and DAVIS-QAconsensus on Stage2 5.717e-06 

MULTICOM- CONSTRUCT and Pcons on Stage2 0.9807 

MULTICOM- CONSTRUCT and ModFOLDclust2 on Stage2 0.003362 

MULTICOM- CONSTRUCT and DAVIS-QAconsensus on Stage2 9.597e-05 

 

Table 4.3. The P-value of pairwise wilcoxon signed ranked sum test for the difference of 

correlation score between MULTICOM servers on Stage1 and Stage2 of CASP10, and 

three other methods: DAVIS-QAconsensus, Pcons, and ModFOLDclust2 

 

Figure 4.1.  The per-target correlation scores of each target against the average real quality 

of the largest model cluster divided by the average real quality of all models in this target 

on Stage2 
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To elucidate the key factors that affect the accuracy of multi-model or single-model 

quality assessment methods, we plot the per-target correlation scores of each target on 

Stage2 against the ratio of the average real quality of the largest model cluster in the pool 

and the average real quality of all the models in the pool in Figure 4.1. To get the largest 

model cluster for each target, we first calculate the GDT-TS score between each pair of 

models, and then use (1 – the GDT-TS score) as the distance measure to hierarchically 

cluster the models. Finally, we use a distance threshold to cut the hierarchical tree to get 

the largest cluster so that the total number of models in the largest cluster is about one third 

of the total number of models in the pool.  

Figure 4.1 shows that the quality prediction accuracy (i.e. per-target correlation 

scores of each target) positively correlates with the average real quality of the largest model 

cluster divided by the average real quality of all models for two multi-model methods 

(MULTICOM-REFINE, MULTICOM-CONSTRUCT), whereas it has almost no 

correlation with single-model methods (MULTICOM-CLUSTER, MULTICOM-

NOVEL). The results suggest that the performance of clustering-based multi-model 

methods depends on the relative real quality of the large cluster of models and that of 

single-model methods does not. This is not surprising because multi-model methods rely 

on pairwise model comparison, but single-model methods try to assess the quality from 

one model.  

As CASP10 models were generated by many different predictors from around of 

the world, the side chains of these models may be packed by different modeling tools. The 

difference in side chain packing may result in difference in input features (e.g. secondary 
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structures) that affect the quality prediction results of single-model methods even though 

they only try to predict the quality of backbone of a model. In order to remove the side-

chain bias, we also tried to use the tool SCWRL[109] to rebuild the side chains of all 

models before applying a single-model quality prediction method - ModelEvaluator. 

Figure 4.2 compares the average correlation and loss of the predictions with or without 

side-chain repacking. Indeed, repacking side-chains before applying single-model quality 

assessment increased the average correlation and reduced the loss. We do a wilcoxon 

signed ranked sum test on the correlation and loss of the predictions before and after 

repacking side-chains. The P-value for average correlation before and after repacking side-

chains on Stage1 is 0.18, and on Stage2 is 0.02. The P-value for loss on Stage1 is 0.42, and 

on Stage2 is 0.38.  

 

Figure 4.2.  The influence of side chain on average correlation and loss of both Stage1 and 

Stage2. Figure 4.2A shows the average correlation of the predictions with or without side-

chain repacking, and Figure 4.2B demonstrates the loss of the predictions with or without 
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side-chain repacking on both Stage1 and Stage2. The tool SCWRL[109] is used for the 

side-chain repacking. 

Since mining a few good models out of a large pool of low-quality models is one 

of the major challenges in protein structure prediction, we compare the performance of 

single-model methods and multi-model methods on the models of several hard CASP10 

template-free targets. Table 4.4 and Table 4.5 report the evaluation results of all four 

servers, DAVIS-QAconsensus, Pcons, and ModFOLDclust2 on all standalone free 

modeling (FM) targets on Stages 1 and 2, i.e. the targets whose domains are all FM 

domains. The results show that the single-model methods (MULTICOM-CLUSTER and 

MULTICOM-NOVEL) clearly performed better than the multi-model methods 

(MULTICOM-REFINE and MULTICOM-CONSTRUCT) on both stages. And the single-

model methods also perform better than the DAVIS-QAconsensus and ModFOLDclust2 

on both stages, and get similar performance with Pcons on Stage1, and better performance 

than Pcons on Stage2. For instance, the average Pearson’s correlation score of 

MULTICOM-NOVEL on Stage1 is 0.539, which is much higher than 0.082 of 

MULTICOM-REFINE. The multi-model methods even get low negative correlation for 

some targets. For example, the Pearson’s correlation score of MULTICOM-REFINE on 

target T0741 at Stage1 is -0.615. We use the tool TreeView[110] to visualize the 

hierarchical clustering of the models of T0741 in Figure 4.3. The qualities of the models 

in the largest cluster are among the lowest, but they are similar to each other leading to 

high predicted quality scores when being assessed by multi-model methods. The example 

indicates that multi-model methods often completely fail (i.e. yielding negative correlation) 
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when the models in the largest cluster are of worse quality, but similar to each other. Multi-

model methods often perform worse than single-model methods when all models in pool 

are of low quality and are different from each other. In this situation, the quality scores 

predicted by multi-model methods often do not correlate with the real quality scores, 

whereas those predicted by single-model methods still positively correlate with real quality 

scores to some degree. As an example, Figure 4.4 plots the real GDT-TS scores and 

predicted GDT-TS scores of a single-model predictor MULTICOM-NOVEL and a multi-

model predictor MULTICOM-REFINE on the models of a hard target T0684 whose best 

model has quality score less than 0.2.  

Based on the per-target correlation between predicted and observed model quality 

scores of the official model quality assessment results [17], the MULTICOM-

CONSTRUCT was ranked 5th on Stage2 models of CASP10 among all CASP10 model 

quality assessment methods. The performance of MULTICOM-CONSTRUCT was also 

slightly better than the benchmark DAVIS-QAconsensus (the naïve consensus method, the 

quality score of a model is calculated by the average structural similarity GDT-TS score of 

the model against other models in the model pool) on Stage2, which was ranked at 10th. 

The methods MULTICOM-REFINE, MULTICOM-NOVEL, and MULTICOM-

CLUSTER were ranked at 11th, 28th, and 29th, respectively. However, it was not surprising 

that the single-model methods such as MULTICOM-NOVEL and MULTICOM-

CLUSTER were ranked lower than most clustering-based methods because the latter 

tended to work better on most CASP template-based targets with good-quality predicted 

models. But, among all single-model methods, MULTICOM-NOVEL and MULTICOM-
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CLUSTER were ranked at 3 th and 4th. And MULTICOM-CLUSTER and MULTICOM-

NOVEL are ranked at 4th and 5th among all single model methods on Stage1 of CASP10 

separately. 

Stage1 of 

CASP10 

MULTICOM-

NOVEL 

MULTICOM-

CLUSTER 

MULTICOM-

CONSTRUCT 

MULTICOM-

REFINE 

DAVIS-QA 

consensus 

Pcons ModFOLD

clust2 

T0666 0.570 0.454 0.138 0.272 0.274 0.346 0.538 

T0735 0.725 0.704 0.414 0.083 0.086 0.667 0.030 

T0734 0.522 0.544 0.152 -0.099 -0.096 0.509 -0.014 

T0737 0.878 0.878 0.221 0.118 0.124 0.565 0.421 

T0740 0.558 0.512 0.710 0.732 0.726 0.684 0.770 

T0741 -0.020 0.214 -0.659 -0.615 -0.611 0.475 -0.674 

Average 0.539 0.551 0.163 0.082 0.084 0.541 0.179 

 

Table 4.4. Pearson correlation of the FM (template-free modeling) targets on Stage1 of 

CASP10 

Stage2 of 

CASP10 

MULTICOM-

NOVEL 

MULTICOM-

CLUSTER 

MULTICOM-

CONSTRUCT 

MULTICOM-

REFINE 

DAVIS-QA 

consensus 

Pcons ModFOLDc

lust2 

T0666 0.213 0.206 0.490 0.499 0.492 0.338 0.520 

T0735 0.466 0.433 0.261 0.159 0.150 0.238 -0.070 

T0734 0.459 0.44 -0.134 -0.342 -0.334 0.199 -0.363 

T0737 0.787 0.806 0.200 0.155 0.147 0.583 0.525 

T0740 0.490 0.451 0.487 0.412 0.411 0.434 0.478 

T0741 -0.079 0.022 -0.444 -0.397 -0.397 0.125 -0.382 

Average 0.389 0.393 0.143 0.081 0.078 0.320 0.118 

Table 4.5. Pearson correlation of all FM (template-free modeling) targets on Stage2 of 

CASP10 
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Figure 4.3.  The hierarchy tree of T0741 on Stage1. All models in the circle form the 

largest cluster in this target. The rightmost column of Figure 3 lists the real GDT-TS 

score of each model. The models in the circle form the largest cluster. The model with the 

underline real GDT-TS score is the best model in this target 
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Figure 4.4.  The real GDT-TS score and predicted GDT-TS score of MULTICOM-

REFINE and MULTICOM-NOVEL for T0684 on Stage 1 and Stage2. 

4.4.2 Results of local quality 

Table 4.6 shows the performance of local quality assessment of our four local 

quality assessment servers, DAVIS-QAconsensus, Pcons, and ModFOLDclust2 on both 

Stage1 and Stage2. In order to show the statistical significant differences for the per-residue 

(local) model quality prediction methods, we also calculate the pairwise wilcoxon signed 

ranked sum test for our four servers and against the other three methods on the local quality, 

and the result is shown in Table 4.7. As we can see from Table 4.7, On Stage1, the P-value 

between MULTICOM-NOVEL and MULTICOM-CONSTRUCT, MULTICOM-REFINE 

and Pcons, MULTICOM-REFINE and ModFOLDclust2, is larger than 0.01, which shows 

these pairs are not statistically significant. On Stage2, the P-value between MULTICOM-

CLUSTER and MULTICOM-CONSTRUCT, MULTICOM-REFINE and Pcons, is larger 

than 0.01. Table 4.6 shows that the multi-model methods performed better than single-
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model methods on average for all the targets of our four servers. However, the single-model 

local quality prediction methods (MULTICOM-CONSTRUCT, MULTICOM-NOVEL, 

MULTICOM-CLUSTER) and the multi-model local quality prediction method 

(MULTICOM-REFINE) performed not very differently on FM targets as shown in Table 

4.8 and Table 4.9. This is not surprising because multi-model methods cannot select real 

good models as reference methods for evaluating the local quality of residues. According 

to the CASP official evaluation [17], MULTICOM-REFINE performs best among all of 

our four servers for the local quality assessment on both Stage1 and Stage2 models of 

CASP10. Comparing with the naive consensus method DAVIS-QAconsensus, Pcons, and 

ModFOLDclust2, the multi-model local quality prediction method MULTICON-REFINE 

performs best on Stage1, and get similar performance with Pcons on Stage2, but not as 

good as DAVIS-QAconsensus and ModFOLDclust2 on Stage2. 

CASP10 Ave. Corr. on Stage1 Ave. Corr. on Stage2 

MULTICOM-REFINE 0.6102 0.6251 

MULTICOM-CLUSTER 0.2604 0.2956 

MULTICOM-NOVEL 0.2882 0.3289 

MULTICOM-CONSTRUCT 0.2889 0.3095 

DAVIS-QAconsensus 0.5841 0.6633 

Pcons 0.5793 0.6226 

ModFOLDclust2 0.5997 0.6526 

 

Table 4.6. Evaluation result of local quality score of four servers, DAVIS-QAconsensus, 

Pcons, and ModFOLDclust2 on Stage1 and Stage2 of CASP10. 
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MULTICOM servers, DAVIS-QAconsensus, Pcons, and ModFOLDclust2 and on Stage1 or 

Stage2 

P-value 

MULTICOM-REFINE and MULTICOM-CLUSTER on Stage1 2.220e-16 

MULTICOM-REFINE and MULTICOM-NOVEL on Stage1 6.661e-16 

MULTICOM-REFINE and MULTICOM-CONSTRUCT on Stage1 6.661e-16 

MULTICOM-CLUSTER and MULTICOM-NOVEL on Stage1 0.0009948 

MULTICOM-CLUSTER and MULTICOM-CONSTRUCT on Stage1 0.0008437 

MULTICOM-NOVEL and MULTICOM-CONSTRUCT on Stage1 0.1781 

MULTICOM-REFINE and Pcons on Stage1 0.01575 

MULTICOM-REFINE and ModFOLDclust2 on Stage1 0.2678 

MULTICOM-REFINE and DAVIS-QAconsensus on Stage1 0.00699 

MULTICOM- CLUSTER and Pcons on Stage1 2.2e-16 

MULTICOM- CLUSTER and ModFOLDclust2 on Stage1 2.553e-16 

MULTICOM- CLUSTER and DAVIS-QAconsensus on Stage1 2.442e-15 

MULTICOM- NOVEL and Pcons on Stage1 2.2e-16 

MULTICOM- NOVEL and ModFOLDclust2 on Stage1 3.046e-16 

MULTICOM- NOVEL and DAVIS-QAconsensus on Stage1 4.885e-15 

MULTICOM- CONSTRUCT and Pcons on Stage1 2.2e-16 

MULTICOM- CONSTRUCT and ModFOLDclust2 on Stage1 3.137e-16 

MULTICOM- CONSTRUCT and DAVIS-QAconsensus on Stage1 4.78e-15 

MULTICOM-REFINE and MULTICOM-CLUSTER on Stage2 2.269e-16 

MULTICOM-REFINE and MULTICOM-NOVEL on Stage2 6.661e-16 

MULTICOM-REFINE and MULTICOM-CONSTRUCT on Stage2 3.137e-16 

MULTICOM-CLUSTER and MULTICOM-NOVEL on Stage2 0.00327 

MULTICOM-CLUSTER and MULTICOM-CONSTRUCT on Stage2 0.5493 

MULTICOM-NOVEL and MULTICOM-CONSTRUCT on Stage2 1.029e-14 

MULTICOM-REFINE and Pcons on Stage2 0.2498 

MULTICOM-REFINE and ModFOLDclust2 on Stage2 0.0005575 

MULTICOM-REFINE and DAVIS-QAconsensus on Stage2 2.443e-06 

MULTICOM- CLUSTER and Pcons on Stage2 2.220e-16 
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MULTICOM- CLUSTER and ModFOLDclust2 on Stage2 2.220e-16 

MULTICOM- CLUSTER and DAVIS-QAconsensus on Stage2 2.220e-16 

MULTICOM- NOVEL and Pcons on Stage2 4.441e-16 

MULTICOM- NOVEL and ModFOLDclust2 on Stage2 2.220e-16 

MULTICOM- NOVEL and DAVIS-QAconsensus on Stage2 2.220e-16 

MULTICOM- CONSTRUCT and Pcons on Stage2 4.089e-16 

MULTICOM- CONSTRUCT and ModFOLDclust2 on Stage2 2.2e-16 

MULTICOM- CONSTRUCT and DAVIS-QAconsensus on Stage2 2.2e-16 

 

Table 4.7. The P-value of pairwise wilcoxon signed ranked sum test for the difference of 

correlation score for local model quality between MULTICOM servers on Stage1 and 

Stage2 of CASP10, and three other methods: DAVIS-QAconsensus, Pcons, and 

ModFOLDclust2. 

 

Stage1 of 

CASP10 

MULTICOM-

NOVEL 

MULTICOM-

CLUSTER 

MULTICOM-

CONSTRUCT 

MULTICOM-

REFINE 

DAVIS-QA 

consensus 

Pcons ModFOLDc

lust2 

T0666 0.261 0.216 0.262 0.261 0.195 0.303 0.164 

T0735 0.118 0.083 0.122 0.366 0.190 0.214 0.224 

T0734 0.025 0.105 0.025 0.402 0.302 0.166 0.232 

T0737 0.554 0.664 0.551 0 0.186 0.704 0.122 

T0740 0.242 0.196 0.243 0.442 0.368 0.377 0.407 

T0741 0.078 -0.035 0.084 0.227 0.108 -0.072 0.136 

Average 0.213 0.205 0.215 0.283 0.225 0.282 0.214 

 

Table 4.8. Local quality score of four servers, DAVIS-QAconsensus, Pcons, and 

ModFOLDclust2 for all FM (template-free modeling) targets on Stage1 of CASP10. 
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Stage2 of 

CASP10 

MULTICOM-

NOVEL 

MULTICOM-

CLUSTER 

MULTICOM-

CONSTRUCT 

MULTICOM-

REFINE 

DAVIS-QA 

consensus 

Pcons ModFOLD

clust2 

T0666 0.244 0.226 0.227 0.310 0.322 0.282 0.337 

T0735 0.125 0.122 0.127 0.288 0.290 0.150 0.351 

T0734 0.129 0.151 0.122 0.172 0.330 0.255 0.305 

T0737 0.426 0.578 0.419 0 0.202 0.583 0 

T0740 0.268 0.197 0.257 0.270 0.422 0.377 0.425 

T0741 0.105 -0.011 0.109 0.165 0.129 0.009 0.119 

Average 0.216 0.211 0.210 0.200 0.283 0.276 0.256 

 

Table 4.9. Local quality score of four servers, DAVIS-QAconsensus, Pcons, and 

ModFOLDclust2 for all FM (template-free modeling) targets on Stage2 of CASP10. 
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Single-model quality assessment on the assessment of scores from probability 

density function 

  

5.1 Abstract 

Protein quality assessment (QA) has played a very important role in protein 

structure prediction. We developed a novel single-model quality assessment method 

Qprob. We calculate the absolute error for each feature value against the true GDT-TS 

score on CASP9 dataset, and use it to estimate the probability density distribution of each 

feature for quality assessment. Our method has been blindly tested on the 11th Critical 

Assessment of Techniques for Protein Structure Prediction (CASP11) as MULTICOM-

NOVEL server. The official result from CASP shows that our method ranks as one of the 

top single-model QA methods. In addition, our method makes big contribution to protein 

structure human predictor MULTICOM, which is officially ranked 3rd out of 143 

predictors. The good performance of our method on template free modeling CASP11 

targets shows the good model selection ability of it on hard targets. All of these excellent 

performance demonstrate that this new probability density distribution based method is 

effective and powerful for single-model quality assessment and has a lot of applications 

for protein structure prediction. The webserver is available at: 

http://calla.rnet.missouri.edu/qprob/. The tools are also available in the webserver. 
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5.2 Introduction 

The number of protein sequences has been generated exponentially during the last 

few decades because of the application of high-throughput next-generation sequencing 

technologies [2]. This highlighted the importance of computational methods in 

bioinformatics and computational biology field, since they are much cheaper and faster 

than experimental method [20], such as the protein structure prediction, protein function 

prediction, and etc [6, 8, 20, 44, 48, 84, 88]. A lot of progress has been made recently for 

protein structure prediction, either template-based methods, or template-free methods. 

Especially with the help of the Critical Assessment of Techniques for Protein Structure 

Prediction (CASP), different protein structure prediction methods can be blindly tested and 

benchmarked. 

During the prediction of protein structure, one category is crucial, that is protein 

(model) quality assessment. The model quality assessment problem can be defined as 

ranking the models without knowing the native structure. The common way of predicting 

protein structure is to first generate thousands of decoys, and then use the model quality 

assessment method to select and rank the models. With the rapid developing technology of 

template-based/template-free modeling, the decoys can be generated by different methods 

easily. However, selecting and ranking the models is still a very hard problem. In general, 

there are two different kinds of protein quality assessment (QA) methods: single-model 

quality assessment [9-14] and consensus model quality assessment[16-18]. During the 

previous CASP experiments, the consensus quality assessment methods usually perform 

better than the single-model quality assessment methods, especially when there is a good 
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consensus in the model pool. However, it is also known that the consensus quality 

assessment may fail badly when there are large portion of bad models in the model pool 

[9]. In addition, the consensus quality assessment method could not generate a good score 

when all of them are irrelevant or there are very few models (e.g. Only 1 model in the 

model pool). Moreover, the computation complexity is also another problem for consensus 

quality assessment method when there are more than tens of thousands of models. The 

single-model method could be a good solution for solving this problem. Currently, most 

single-model method uses the actual model’s information, such as the evolution 

information [111], residue environment compatibility [112], structural features and 

physics-based knowledge [11-14, 41, 46, 113]. Some other methods also tries to combine 

the single-model and consensus methods, and achieve good performance in the CASP11 

[20, 84]. Comparing with other QA methods, first of all, Qprob is a pure single-model QA 

method, which is different from consensus methods[2, 20, 84]. Also, unlike other single-

model QA methods[9, 10, 13] which use unique type of features, Qprob combines 

structural, physicochemical features and four energy scores. Moreover, there is no QA 

method that does the error estimation for these features and applies the probability density 

function based on it for model quality assessment.  

In this paper, we benchmarked and normalized four single-model QA energy scores 

in combining with seven physicochemical and structural features. We normalize the energy 

scores by benchmarking on PISCES[55] database, and apply the idea similar to EM 

algorithm to get the best weight for each feature. The probability density function of the 

error between predicted score and real GDT-TS score is generated. Our assumption is that 
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the error for each predicted score against the real score obeys the normal distribution. By 

combining the different probability density distribution from each feature, we can predict 

the global quality score of a model with the highest probability. Similar to state-of-the-art 

single-model QA method performance is achieved when blindly tested our method on 

CASP11, which demonstrate the powerful of predicting model quality from the probability 

density distribution. 

The paper is organized as follows. In the methods section, we describe each feature 

and the calculation of the global quality assessment score in detail. In the result section, we 

describe the performance of our method on CASP11. In the discussion section, we 

summarize the results and conclude the direction of future works. 

5.3 Methods 

In this section, we describe how to generate the probability density distribution 

based on feature error estimation, and use it for global quality assessment. First, we depict 

the calculation of in total 11 features. Second, we explain the feature errors estimation 

while the data is benchmarked on CASP9 targets. Third, we report how the weights for 

each feature are generated. Finally, we describe the probability density function and how 

it is used for protein quality assessment. 

5.3.1 Feature generation 

Our method uses a set of features extracted from the structural model and its protein 

sequence, physicochemical characteristic of the structural model [113], and also four 

energy scores for predicting the global quality score of a model. The features include: 
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(1). The RF_CB_SRS_OD score [11] is an energy score for evaluating the protein 

structure based on statistical distance dependent pair potentials. The score is normalized to 

the range of 0 and 1, which is described in detail at the result section. 

(2). The secondary structure similarity score is calculated by the difference between 

secondary structure predicted by Spine X [114] from the protein sequence and those of a 

model parsed by DSSP [106]. 

(3). The secondary structure penalty percentage score. This is calculated by the 

following formula: 

𝑆𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =
𝐹𝐻 + 𝐹𝑆
𝑁

 

 

The 𝐹𝐻 is the total number of helix secondary structure predicted for each amino 

acid that is matching with the one parsed by DSSP. The 𝐹𝑆 is for the sheet secondary 

structural matching. 𝑁 is the sequence length. 

(4). The Euclidean compact score. This score can be used to describe the compact 

of the protein model. This is calculated by the following formula: 

𝑆𝐸𝑢𝑐𝑙𝑖 = 
∑𝐸𝑢𝑐𝑙𝑖(𝑖, 𝑗)

∑3.8 ∗ |𝑖 − 𝑗|
 

 

The i and j is the index of amino acids, and Eucli(i,j) is the Euclidean distance of 

amino acid i and j in the structural model. We ignore the calculation of amino acid with 

itself. 
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(5). The surface score for exposed nonpolar residues. This score describes the 

percentage of area of the nonpolar residues exposed, and is calculated as follows: 

𝑆𝑠𝑢𝑟𝑓 = 
∑ 𝑆𝐸𝑖
∑𝑆𝑖

 

 

𝑆𝑖 is the exposed area of residue i parsed by DSSP, and 𝑆𝐸𝑖  is the exposed area of 

nonpolar residue i. The 𝑆𝐸𝑖 is set to 0 once residue i is polar. 

(6). The exposed mass score. This score describes the percentage of mass of 

exposed residues, and is calculated as follows: 

𝑆𝑚𝑎𝑠𝑠 = 
∑𝑆𝑇𝑁𝑖 ∗ 𝑀𝑖

∑𝑆𝑖 ∗ 𝑀𝑖
 

 

𝑆𝑖 is the exposed area of residue i parsed by DSSP, 𝑆𝑇𝑁𝑖 is the total area of nonpolar 

residue i, and 𝑀𝑖 is the total mass of residue i. 

(7). The exposed surface score. This score describes the percentage of area of the 

residues exposed, and is calculated as follows: 

𝑆𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 
∑𝑆𝑖
∑𝑆𝑇𝑖

 

 

𝑆𝑇𝑖 is the total area of residue i parsed by DSSP, and 𝑆𝑖 is the exposed area of 

residue i. 
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(8). The solvent accessibility similarity score is calculated by the difference 

between solvent accessibility predicted SSpro4[115] from the protein sequence and those 

of a model parsed by DSSP [106]. 

(9). The RWplus score [12] is an energy score evaluating protein models based on 

distance-dependent atomic potential. The score is normalized to the range of 0 and 1, which 

is described in detail at the result section. 

(10). The ModelEvaluator score [13] is a score evaluating protein models based on 

structural features and support vector machines. 

(11). The Dope score [14] is an energy score evaluating protein models based on 

reference state of non-interacting atoms in homogeneous sphere. The score is normalized 

to the range of 0 and 1, which is described in detail at the result section. 

5.3.2 Feature errors estimation 

We calculate all feature scores on 99 CASP9 targets, which in total have 22016 

models. We assume the error of all feature scores against real GDT-TS score obeys normal 

distribution. The feature error is calculated for each model using the following formula: 

𝐹𝐸𝑖,𝑗 = 𝐹𝑖,𝑗 − 𝑅𝑗 

𝐹𝐸𝑖,𝑗 is the error estimate of feature i on model j, 𝐹𝑖,𝑗 is the predicted score of feature 

i on model j, and 𝑅𝑗 is the real GDT-TS score of model j. Based on the error estimation of 

each model, we calculate the mean 𝑀𝑖 and standard deviation 𝑆𝐷𝑖 for each feature i as 

follows: 
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{
 
 

 
 𝑀𝑖 =

∑ 𝐹𝐸𝑖,𝑗
𝑁
𝑗=1

𝑁

 𝑆𝐷𝑖 = √
∑ (𝐹𝐸𝑖,𝑗 −𝑀𝑖)2
𝑁
𝑗=1

𝑁

 

i is in the range of 1 and 11 which represent all 11 features. N is the total number 

of models.  

The feature error estimation results (mean and standard deviation of each feature) 

can be used for global model quality score assessment based on probability density 

function. 

5.3.3 Feature weight estimation 

We have in total 11 features, and the naive way to estimate the weight of each 

feature by trying all possible weight combination is time consuming. Here, we describe a 

method similar to EM algorithm for estimating the weight of each feature. There are three 

steps, as following: 

(1).Randomly assign a weight to each feature. The weight value is in the range of -

0.8 to 0.8 with the step 0.01, and assign the minimum average GDT-TS loss (Min-Loss) to 

1. 

(2). Expectation step: calculating the per-target average loss using the current 

weight value set W benchmarked on CASP9 targets. Terminate when the current weight 

value set W is not changed and all features have been go through the maximization step. 

(3). Maximization step: trying different weight values for feature i and fixing the 

weight of all other features. For each weight w for feature i, get the average GDT-TS loss 

from step (2), and updating the Min-Loss if it is less than the current value of Min-Loss. 
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Also, the current weight value set W is updated once we find a different weight w 

comparing with the current weight of feature i. Repeat step (3) for the next feature i+1, 

unless it finishes at step (2). 

After applying this algorithm, we finally get a weight value set W which has the 

minimum average GDT-TS loss benchmarked on CASP9. The best weight based on our 

benchmark is as follows for each feature: 

[0.03,0.09,0.04,0.08,0.08,0.01,0.03,0.10,0.00,0.09,-0.02]. 

5.3.4 Model quality assessment based on probability density function 

Given a protein model, we first calculate feature score 𝑃𝑟𝑒𝑖 for each feature i (i is 

in the range of 1 and 11). And then we calculate the adjusted score (an estimation of the 

real score) by 𝐴𝑑𝑗𝑢𝑠𝑡_𝑝𝑟𝑒𝑖 = 𝑃𝑟𝑒𝑖 −𝑀𝑖, while the mean 𝑀𝑖 and standard deviation 𝑆𝐷𝑖 

for each feature i is calculated in the feature errors estimation step. We use the following 

probability density function of global quality 𝑋𝑖 for each feature i (the mean is 𝐴𝑑𝑗𝑢𝑠𝑡_𝑝𝑟𝑒𝑖 

and standard deviation is 𝑆𝐷𝑖): 

𝑃𝑖(𝑋𝑖) =
𝑒
−
(𝑋𝑖−𝐴𝑑𝑗𝑢𝑠𝑡_𝑝𝑟𝑒𝑖)

2

2∗𝑆𝐷𝑖
2

√2𝜋𝑆𝐷𝑖
 

 

We normalize the probability score to convert it into the range of 0 and 1 with the 

following formula: 

𝑃_𝑛𝑜𝑟𝑚𝑖(𝑋𝑖) =
𝑃𝑖(𝑋𝑖)

𝑃𝑖(𝐴𝑑𝑗𝑢𝑠𝑡_𝑝𝑟𝑒𝑖)
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The final global quality score is calculated by combining all 11 normal distributions 

from each feature prediction. Given a value X in the range of 0 and 1, we calculate the 

combined probability score as follows: 

𝑃_𝑐𝑜𝑚𝑏𝑖𝑛𝑒(𝑋) = ∑(𝑊𝑖 + 𝑃𝑛𝑜𝑟𝑚𝑖(𝑋))

𝑖=11

𝑖=1

 

The value X which has the maximum combined probability score 𝑃_𝑐𝑜𝑚𝑏𝑖𝑛𝑒(𝑋) 

is assigned as the global quality score for the model. Here, the calculation of weight 𝑊𝑖  is 

described in previous section. 

5.4 Results 

In this section, we first briefly describe the feature processing for our method 

Qprob, and then describe the feature errors estimation result benchmarked on CASP9 

datasets, and finally present an evaluation of its performance on CASP11. 

5.4.1 Feature normalization result 

We use 11 feature scores in total in our method, and there is no need to do 

normalization for most of them. However, some features, especially the energy scores are 

dependent on the sequence length, and not in the range of 0 and 1. The native structure 

with long sequence may have different energy score compared with the short one, even 

though both of them are native structure. So we need to normalize these scores before using 

them. Here, we use PISCES  database to benchmark and normalize three scores (DFIRE2 

score, RWplus score, and RF_CB_SRS_OD score) based on the sequence length. The 

version of PISCES is: the percentage identity cutoff is 20%, the resolution cutoff is 1.8 
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angstroms, and the R-factor cutoff is 0.25. Figure 5.1 shows the protein sequence length 

versus three original energy scores (DFIRE2, RWplus, and RF_CB_SRS_OD scores). We 

draw the regression line in these figures to fit the protein sequence with the score. The 

following formula describes the relationship of protein sequence length and the energy 

score based on the regression line: 

{

𝐷𝑓𝑖𝑟𝑒 𝑠𝑐𝑜𝑟𝑒                   = −1.971 ∗ 𝐿 + 37.746             
𝑅𝑊𝑝𝑙𝑢𝑠 𝑠𝑐𝑜𝑟𝑒               = −232.6 ∗ 𝐿 + 6589.5             
𝑅𝐹_𝐶𝐵_𝑆𝑅𝑆_𝑂𝐷 𝑠𝑐𝑜𝑟𝑒 = −0.4823 ∗ 𝐿 + (−15.9066)

 

 

L is the protein sequence length. To normalize these scores into the range of 0 and 

1, we use the following formula: 

{
 
 

 
 𝑁𝑜𝑟𝑚_𝑆𝐷𝑓𝑖𝑟𝑒                  =

−𝑃𝐷𝑓𝑖𝑟𝑒 𝑠𝑐𝑜𝑟𝑒

1.971 ∗ 𝐿
                         

𝑁𝑜𝑟𝑚_𝑆𝑅𝑊𝑝𝑙𝑢𝑠               =
−𝑃𝑅𝑊𝑝𝑙𝑢𝑠 𝑠𝑐𝑜𝑟𝑒

232.6 ∗ 𝐿
                     

𝑁𝑜𝑟𝑚_𝑆𝑅𝐹_𝐶𝐵_𝑆𝑅𝑆_𝑂𝐷    =
700 − 𝑃𝑅𝐹_𝐶𝐵_𝑆𝑅𝑆_𝑂𝐷 𝑠𝑐𝑜𝑟𝑒
1000 + 0.4823 ∗ 𝐿

 

 

𝑃𝐷𝑓𝑖𝑟𝑒 𝑠𝑐𝑜𝑟𝑒 is the predicted DFIRE2 score, 𝑃𝑅𝑊𝑝𝑙𝑢𝑠 𝑠𝑐𝑜𝑟𝑒 is the predicted RWplus 

score, and 𝑃𝑅𝐹_𝐶𝐵_𝑆𝑅𝑆_𝑂𝐷 𝑠𝑐𝑜𝑟𝑒 is the predicted RF_CB_SRS_OD score. 𝑃𝐷𝑓𝑖𝑟𝑒 𝑠𝑐𝑜𝑟𝑒 is set 

to the range of -1.971*L and 0, 𝑃𝑅𝑊𝑝𝑙𝑢𝑠 𝑠𝑐𝑜𝑟𝑒 is set to the range of -232.6*L and 0, and 

𝑃𝑅𝐹_𝐶𝐵_𝑆𝑅𝑆_𝑂𝐷 𝑠𝑐𝑜𝑟𝑒 is set to the range of 0.4823*L-300 and 700 based on the benchmark of 

all scores in CASP9 targets so that most of models are in this range. 
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Figure 5.1.  The relationship of sequence length and three energy scores (DFIRE2, RWplus, 

and RF_CB_SRS_OD scores) on PISCES database.  
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Figure 5.2.  The probability density distribution for the error estimation of all 11 feature 

scores. 

5.4.2 Feature error estimation result 

We calculate all 11 feature scores (three energy scores are normalized in the 

previous section) on all models of CASP9 targets, and the error between predicted score 

and real GDT-TS score for each model are used for the feature error estimation to get the 

probability density distribution. Figure 5.2 shows the probability density distribution of all 

11 features. The x-axis is the error between predicted score and real GDT-TS score, and 

the y-axis is the probability density distribution of the error. The mean and standard 

deviation is also demonstrated in the figures. We use a normal distribution to fit these 

errors. We can see from the figure that ModelEvaluator score has the mean -0.0219, which 
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is the closest to the real GDT-TS score. In addition, it also has the minimum deviation, 

which shows it is the most stable feature for evaluating the global model qualities. The 

Euclidean compact score has the maximum absolute mean (0.4119), showing it is very 

different from the real GDT-TS score. However, our adjusted score considers the mean of 

the error estimation, so it may still be very useful for our final prediction. 

5.4.3 Global quality assessment result 

Our method Qprob is blindly tested on CASP11 as MULTICOM-NOVEL server, 

and is used for the human predictor MULTICOM (MUTLCIOM is officially ranked 3rd 

out of 143 predictors according to the total scores of the first models predicted). According 

to the analysis result by removing each QA method from MULTICOM, the removal of 

Qprob causes the biggest decrease in the average Z-score of top one models selected by 

MULTICOM method (Z-score from 1.364 to 1.321) [20, 84], showing Qprob makes big 

contribution to MUTLCOM. Our method is one of the best single-model QA method based 

on the CASP official evaluation [49] and our evaluations on Table 5.1 and Table 5.2.  

Table 5.1 depicts the per-target average correlation, average GDT-TS loss, average 

spearman’s correlation, and average kendall tau correlation of our method Qprob and other 

pure single-model QA methods on Stage 1 (sel20) CASP11 datasets. We also illustrate the 

p-value of the pairwise Wilcoxon signed ranked sum test for the difference of 

loss/correlation between Qprob and other pure single-model QA methods to show the 

significance of differences. The table is ranked by the average GDT-TS loss since the loss 

metric (the difference of GDT-TS score of the best model and predicted top 1 model) shows 

the model selection ability of a QA method. From Table 5.1, we can see Qprob ranked at 
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third based on the average GDT-TS loss among all pure single-model QA methods on 

Stage 1 CASP11 datasets. According to 0.01 significant threshold of p-value, there is no 

significant difference between Qprob and state-of-the-art QA methods ProQ2 and ProQ2-

refine on both correlation and loss. The difference on average spearman’s correlation and 

kendall tau correlation is also small between Qprob and the other two top performing QA 

methods. Other than CASP11 QA server predictors, we also compare Qprob with five 

single-model QA scores which are highlighted in bold in Table 5.1. The five scores are 

ModelEvaluator score, Dope score, DFIRE2 score, RWplus score, and RF_CB_SRS_OD 

score. The result shows Qprob has the best performance on both correlation and loss among 

these scores. Moreover, the difference of correlation between Qprob and four QA scores 

(Dope score, DFIRE2 score, RWplus score, and RF_CB_SRS_OD score) is significant, 

and the difference of loss between Qprob and three QA scores (DFIRE2 score, RWplus 

score, and RF_CB_SRS_OD score) is significant according to 0.01 significant threshold 

of p-value. Finally, we also calculate the performance of the baseline consensus QA 

method DAVIS_consensus (correlation and loss is 0.798 and 0.052 respectively). Not 

surprisingly, we find out the performance of Qprob is worse than DAVIS_consensus 

method, and the difference is significant (p-value of correlation and loss is 1.4e-12 and 

1.6e-4 respectively). The difference is more significant between Qprob and start-of-the-art 

consensus QA method Pcons-net[116] (correlation and loss is 0.811 and 0.024, with p-

value 1.93e-14 and 1.61e-6 respectively).   
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Server name Ave. corr. Ave. loss Ave. spearman Ave. kendall. p-value loss p-value corr. # 

ProQ2 0.643 0.090 0.506 0.379 0.9776 0.2755 84 

ProQ2-refine 0.653 0.093 0.535 0.402 0.9935 0.01756 84 

Qprob 0.631 0.097 0.517 0.389 
- - 

84 

ModelEvaluator 0.6 0.097 0.47 0.353 0.9224 0.2678 84 

VoroMQA 0.561 0.108 0.426 0.318 0.288 8.61E-05 84 

Wang_SVM 0.655 0.109 0.535 0.401 
0.09109 0.003131 

84 

Dope 0.542 0.111 0.416 0.316 0.06388 9.56E-10 84 

Wang_deep_2 0.633 0.115 0.514 0.388 0.03468 0.2755 84 

Wang_deep_3 0.626 0.117 0.513 0.388 0.008288 0.6034 84 

Wang_deep_1 0.613 0.128 0.517 0.386 0.000559 0.403 84 

DFIRE2 0.502 0.135 0.388 0.284 0.000589 1.08E-12 84 

RWplus 0.536 0.135 0.433 0.323 0.002436 6.52E-11 84 

FUSION 0.095 0.154 0.133 0.099 0.001565 4.05E-13 84 

raghavagps-qaspro 0.35 0.156 0.263 0.187 0.00019 6.02E-12 84 

RF_CB_SRS_OD 0.486 0.162 0.357 0.256 0.000114 4.56E-09 84 

 

Table 5.1. The per-target average correlation, average loss, average spearman, and average 

kendall tau score of our method Qprob and other pure single-model QA methods on sel20 

CASP11 dataset. 

 

Server name Ave. corr. Ave. loss 
Ave. 

spearman 
Ave. 

kendall. 
p-value loss p-value corr. # 

ProQ2 0.372 0.058 0.366 0.256 0.2387 0.8636 83 

Qprob 0.381 0.068 0.387 0.272 - - 83 

VoroMQA 0.401 0.069 0.386 0.269 
0.4335 0.5864 

83 

ProQ2-refine 0.37 0.069 0.375 0.264 0.2442 0.9656 83 

ModelEvaluator 0.324 0.072 0.305 0.212 0.002554 0.3084 83 

Dope 0.304 0.077 0.324 0.228 
1.59E-07 0.74 

83 

RWplus 0.295 0.084 0.314 0.22 7.00E-09 0.11 83 

Wang_SVM 0.362 0.085 0.351 0.245 0.4774 0.1502 83 

raghavagps-qaspro 0.222 0.085 0.205 0.139 3.07E-07 0.006219 83 

Wang_deep_2 0.307 0.086 0.298 0.208 0.000593 0.03628 83 

Wang_deep_1 0.302 0.089 0.293 0.203 0.000911 0.04544 83 

DFIRE2 0.235 0.091 0.253 0.175 6.15E-11 0.004036 83 

Wang_deep_3 0.302 0.092 0.29 0.202 0.000469 0.008166 83 

RF_CB_SRS_OD 0.36 0.097 0.35 0.243 0.06173 0.002035 83 

FUSION 0.05 0.111 0.082 0.054 7.16E-11 5.82E-07 83 
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Table 5.2. The per-target average correlation, average loss, average spearman, and average 

kendall tau score for our method Qprob and several other pure single-model QA methods 

on top150 CASP11 dataset. 

We also evaluate the performance of Qprob and other QA methods on Stage2 

(top150) CASP11 datasets in Table 5.2. Qprob ranked second among all pure single-model 

QA methods based on the average loss metric. The difference between Qprob and ProQ2 

is not significant on both correlation and loss (with p-value 0.2387 and 0.8636 

respectively), showing close to state-of-the-art model selection ability among single-model 

QA methods. Comparing Qprob with five scores (ModelEvaluator score, Dope score, 

DFIRE2 score, RWplus score, and RF_CB_SRS_OD score), the difference of correlation 

between Qprob and four scores (ModelEvaluator score, Dope score, DFIRE2 score, and 

RWplus score) is significant, and the difference of loss between Qprob and two scores 

(DFIRE2 score, and RF_CB_SRS_OD score) is significant according to p-value threshold 

0.01. In addition, we also compare the performance of Qprob with baseline consensus 

method DAVIS_consensus on Stage2 (top150) CASP11 datasets. The per-target average 

correlation of DAVIS_consensus is 0.57, which is better than Qprob (with correlation 

0.381). The difference of correlation is significant (with p-value 6.14e-4). However, the 

per-target loss of Qprob (with loss 0.068) is better than DAVIS_consensus (with loss 

0.073). Although the difference of loss is not very significant (p-value is 0.11), this shows 

similar model selection ability of Qprob on top150 CASP11 datasets comparing with 

consensus method. Moreover, comparing with top performing consensus QA method 

Pcons-net (with loss 0.049), the difference of loss between Qprob and Pcons-net is still not 
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very significant (p-value is 0.19). To illustrate the model selection ability of the QA 

methods on hard target, we evaluate the performance of Qprob and several selected top 

performing single-model/consensus QA methods on the template free CASP11 targets, 

which are difficult for protein structure prediction. We calculate the summation of Z-score 

for the selected top 1 model by each QA method. The result is shown in Figure 5.3.  

 

Figure 5.3.  The summation of Z-score for the top 1 model selected by each method 

 

Figure 5.3A shows the performance of each method on Stage1 of CASP11 datasets. 

The single-model QA methods are in bold. We can see the consensus QA methods have 

relatively better performance, such as the baseline pairwise method DAVIS_consensus 

which gets the highest Z-score. Figure 5.3B shows the performance of each QA method 
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on Stage 2 of CASP11 datasets. It is very interesting to see that the single-model QA 

methods have relatively better performance than consensus QA methods. Especially, our 

method Qprob and VoromQA have the highest Z-score comparing with other single QA 

methods. And another interesting finding is the pairwise method DAVIS_consensus has Z-

score around 0, which is almost random. This shows the ability of single-model QA method 

for model selection on hard targets. The MULTICOM-CONSTRUCT ranks third based on 

the Z-score, which combines single and consensus QA methods, showing the combination 

of single and consensus QA method is also quite useful for model selection. 

5.5 Discussion 

In this paper, we introduce a novel single-model QA method Qprob. Different from 

other single-model QA methods, we first time introduce the error estimation by 

benchmarking several different physicochemical, structural and energy feature scores, and 

use the combination of probability density distribution for the global quality assessment. 

We blindly tested our method on CASP11, and it is one of the best single-model QA 

method based on the CASP official evaluation and our evaluations. The good performance 

of our method on template free targets demonstrates the model selection ability of our 

method on hard targets. In addition, our method is also involved in the model selection of 

MULTICOM human predictor attending CASP11, which is one of the best human 

predictors among all server and human predictors. This demonstrate the broad application 

of our method in model selection and protein structure prediction. In future, we plan to 

benchmark more features and improve the model selection ability of our method, finally 

apply it to predict more accurate protein structures. 
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DeepQA: Improving the estimation of single protein model quality with deep belief 

networks 

  

6.1 Abstract 

Protein quality assessment (QA) by ranking and selecting protein models has long 

been viewed as one of the major challenges for protein tertiary structure prediction. 

Especially, estimating the quality of a single protein model, which is important for selecting 

a few good models out of a large model pool consisting of mostly low-quality models, is 

still a largely unsolved problem. We introduce a novel single-model quality assessment 

method DeepQA based on deep belief network that utilizes a number of selected features 

describing the quality of a model from different perspectives, such as energy, physio-

chemical characteristics, and structural information. The deep belief network is trained on 

several large datasets consisting of models from the Critical Assessment of Protein 

Structure Prediction (CASP) experiments, several publicly available datasets, and models 

generated by our in-house ab initio method. Our experiment demonstrate that deep belief 

network has better performance compared to Support Vector Machines and Neural 

Networks on the protein model quality assessment problem, and our method DeepQA 

achieves the state-of-the-art performance on CASP11 dataset. It also outperformed two 

well-established methods in selecting good outlier models from a large set of models of 

mostly low quality generated by ab initio modeling methods. DeepQA is a useful tool for 
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protein single model quality assessment and protein structure prediction. The source code, 

executable, document and training/test datasets of DeepQA for Linux is freely available to 

non-commercial users at http://cactus.rnet.missouri.edu/DeepQA/. 

6.2 Introduction 

The tertiary structures of proteins are important for understanding their functions, 

and have a lot of biomedical applications, such as the drug discovery [117]. With the wide 

application of next generation sequencing technologies, millions of protein sequences have 

been generated, which create a huge gap between the number of protein sequences and the 

number of protein structures [2, 58].  The computational structure prediction methods have 

the potential to fill the gap, since it is much faster and cheaper than experimental 

techniques, and also can be used for proteins whose structures are hard to be determined 

by experimental techniques, such as X-ray crystallography [117].  

There are generally two major challenges in protein structure prediction [20]. The 

first challenge is how to sample the protein structural model from the protein sequences, 

the so-called structure sampling problem. Two different kinds of methods have been used 

to do the model sampling. The first is template-based modeling method [15, 77, 86, 118-

121] which uses the known structure information of homologous proteins as templates to 

build protein structure model, such as I-TASSER [122], FALCON [120, 121], MUFOLD 

[30] and RaptorX [123]. The second is ab initio modeling method [44, 87, 124-127], which 

builds the structure from scratch, without using existing template structure information. 

The second challenge is how to select good models from generated models pool, the so-

called model ranking problem. It is essential for protein structure prediction, such as 

http://cactus.rnet.missouri.edu/DeepQA/
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selecting models generated by ab initio modeling methods. There are mainly two different 

types of methods for the model ranking. The first is consensus methods [16-18], which 

calculate the average structural similarity score of a model against other models as its 

model quality. This method assumes the models in a model pool that are more similar to 

other models have better quality. It shows good performance in previous Critical 

Assessment of Techniques for Protein Structure Prediction (CASP) experiments, which is 

a worldwide experiment for blindly testing protein structure prediction methods every two 

year. However, the accuracy of this method depends on input data, such as the proportion 

of good models in a model pool and the similarity between low quality models. It has been 

shown that this kind of methods is not working well when a large portion of models are of 

low quality [9]. The time complexity of most consensus methods is O(n2) time complexity 

(n: the total number of models), making it too slow to assess the quality of a large number 

of models. These problems with consensus methods highlight the importance of developing 

another kind of protein model quality assessment (QA) method – single-model QA method 

[9-15, 19, 126] that predicts the model quality based on the information from a single model 

itself. Single-model quality assessment methods only require the information of a single 

model as input, and therefore its performance does not depend on the distribution of high 

and low quality models in a model pool. In this paper, we focus on develop a new single-

model quality assessment method that uses deep learning in conjunction with a number of 

useful features relevant to protein model quality. 

Currently, most single-model QA methods predict the model quality from sequence 

evolutionary information [111], residue environment compatibility [112], structural 
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features and physics-based knowledge [11-14, 41, 46, 113]. On such single-model QA 

method - ProQ2 [61] has relatively good performance in the CASP11 experiment, which 

uses Support Vector Machines with a number of features from a model and its sequence to 

predict its quality.  

Here, we propose to develop a novel single-model quality assessment method based 

on deep belief network - a kind of deep learning methods that show a lot of promises in 

image processing [3, 128, 129] and bioinformatics [65]. We benchmark the performance 

of this method on large QA datasets, including the CASP datasets, four datasets from the 

recently 3DRobot decoys [60], and a dataset generated by our in-house ab initio modeling 

method UniCon3D. The good performance of our method - DeepQA on these datasets 

demonstrate the potential of applying deep learning techniques for protein model quality 

assessment. 

The paper is organized as follows. In the Methods Section, we describe the datasets 

and features that are used for deep learning method, and how we implement, train, and 

evaluate the performance of our method. In the Result Section, we compare the 

performance of deep learning technique with two other QA methods based on support 

vector machines and neural networks. In the Results and Discussion Section, we 

summarize the results. In the Conclusion Section, we conclude the paper with our findings 

and future works. 
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6.3 Methods 

6.3.1 Datasets 

We collect three previous CASP models (CASP8, CASP9, and CASP10) from the 

CASP website http://predictioncenter.org/download_area/, 3DRobot decoys[60], and 3113 

native protein structure from PISCES database [55] as the training datasets. CASP11 

models as testing dataset, and UniCon3D ab initio CASP11 decoys as the validation 

datasets. The 3DRobot decoys have four sets: 200 non-homologous (48 α, 40 β, and 112 

α/β) single domain proteins each having 300 structural decoys; 58 proteins generated in a 

Rosetta benchmark[23] each having 100 structural decoys; 20 proteins in a Modeller 

benchmark [130] each having 200 structural decoys; and 56 proteins in a I-TASSER 

benchmark [124] each having 400 structural decoys. Two sets (stage1 and stage2) of 

CASP11 targets are used to test the performance of DeepQA. Each target at stage 1 contains 

20 server models spanning the whole range of structural quality and each target at stage 2 

contains 150 top server models selected by Davis-QAconsensus method. In total, 803 

proteins with 216,875 structural decoys covering wide range of qualities are collected for 

training and testing DeepQA. All of these data and calculated quality scores are available 

at: http://cactus.rnet.missouri.edu/DeepQA/. In addition, we validate performance of our 

QA methods in a dataset produced by our ab initio modeling tool UniCon3D, which in 

total includes 24 targets and 20030 models. 

6.3.2 Input features for DeepQA 

 

http://predictioncenter.org/download_area/
http://cactus.rnet.missouri.edu/DeepQA/
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Feature Name Feature descriptions 

(1). Surface score (SU) The total area of exposed nonpolar residues divided by the total area of all residues 

(2). Exposed mass score (EM) 
The percentage of mass for exposed area, equal to the total mass of exposed area divided 

by the total mass of all area 

(3). Exposed surface score (ES) The total exposed area divided by the total area 

(4). Solvent accessibility score 

(SA) 

The difference of solvent accessibility predicted by SSpro4[115] from the protein 

sequence and those of a model parsed by DSSP [106] 

(5).  RF_CB_SRS_OD score[11] A novel distance dependent residue-level potential energy score. 

(6). DFIRE2 score [64] A distance-scaled all atom energy score. 

(7). Dope score [14] A new statistical potential discrete optimized protein energy score. 

(8). GOAP score [62] A generalized orientation-dependent, all-atom statistical potential score. 

(9). OPUS score [63] A knowledge-based potential score. 

(10). ProQ2 score [61] A single-model quality assessment method by machine learning techniques. 

(11). RWplus score [12] 

A new energy score using pairwise distance-dependent atomic statistical potential 

function and  side-chain orientation-dependent energy term 

(12). ModelEvaluator score [13] 
A single-model quality assessment score based on structural features using support 

vector machine. 

(13). Secondary structure 

similarity score (SS) 

The difference of secondary structure information predicted by  Spine X [114] from a 

protein sequence and those of a model parsed by DSSP [106]  

(14). Secondary structure penalty 

score (SP) 

Calculated from the predicted secondary structure alpha-helix and beta-sheet matching 

with the one parsed by DSSP. 

(15). Euclidean compact score 

(EC) 

The pairwise Euclidean distance of all residues divided by the maximum Euclidean 

distance (3.8) of all residues. 

(16). Qprob [19] 

A single-model quality assessment score that utilizes 11 structural and physicochemical 

features by feature-based probability density functions. 

 

Table 6.1. 16 features for benchmarking DeepQA. 

 

In total, 16 features are used for benchmarking our method DeepQA, which 

describe the structural, physio-chemical and energy properties of a protein model. These 
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features include 9 available top-performing energy and knowledge-based potentials scores, 

including ModelEvaluator score [13], Dope score [14], RWplus score [12], 

RF_CB_SRS_OD score [11], Qprob scores[19], GOAP score [62], OPUS score [63], 

ProQ2 score [61], DFIRE2 score [64].  All of these scores are converted into the range of 

0 and 1 as the input features for training the deep leaning networks. Occasionally, if a 

feature cannot be calculated for a model due to the failure of a tool, its value is set to 0.5. 

The remaining 7 input features are generated from the physio-chemical properties 

of a protein model. These features are calculated from a structural model and its protein 

sequence [113], which include: secondary structure similarity (SS) score, solvent 

accessibility similarity (SA) score, secondary structure penalty (SP) score, Euclidean 

compact (EC) score, Surface (SU) score, exposed mass (EM) score, exposed surface (ES) 

score. 

A summary table of all features used for benchmarking DeepQA is given in Table 

6.1. 

6.3.3 Deep belief network architectures and training procedure 

Our in-house deep belief network framework [65] is used  to train deep learning 

models for protein model quality assessment. As is shown in Figure 6.1, in this framework, 

a two-layer Restricted Boltzmann Machines (RBMs) form the hidden layers of the deep 

learning networks, and one layer of logistic regression node is added at the top to output a 

real value between 0 and 1 as predicted quality score. The weights of RBMs are initialized 

by unsupervised learning called pre-training. The pre-train process is carried out by the 

‘contrastive divergence’ algorithm to adjust the weight in the RBM networks [66]. The 
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mean square error is considered as cost function in the process of standard error backward 

propagation. The final deep belief architecture is fine-tuned and optimized based on 

Broyden-Fletcher-Goldfarh-Shanno(BFGS) optimization [131]. We divide the training 

data equally into five sets, and a five-fold cross validation is used to train and validate 

DeepQA. Five parameters of DeepQA are adjusted during the training procedure. The five 

parameters are total number of nodes at the first hidden layer (N1), total number of nodes 

at the second hidden layer (N2), learning rate Ɛ (default 0.001), weight cost ω (default 

0.07), and momentum ν (default from 0.5 to 0.9). The last three parameters are used for 

training the RBMs. The average of Mean Absolute Error (MAE) is calculated for each 

round of five-fold cross validation to estimate the model accuracy.  MAE is the absolute 

difference of predicted value and real value. 
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Figure 6.1.  The Deep Belief Network architecture for DeepQA. 

6.3.4 Model accuracy evaluation metrics 

We evaluate the accuracy of DeepQA on 84 protein targets on both stage 1 and 

stage 2 models of the 11th community-wide experiment on the Critical Assessment of 

Techniques for Protein Structure Prediction (CASP11), which are available in the CASP 

official website (http://www.predictioncenter.org/casp11/index.cgi).  

The real GDT-TS score of each protein model is calculated against the native 

structure by TM-score [107]. Second, all feature scores are calculated for each protein 

model. The trained DeepQA is used to predict the quality score of a model based on its 

feature scores. 

To evaluate the performance of QA method, we use the following metrics: average 

per-target loss which is the difference of GDT-TS score of the top 1 model selected by a 

QA method and that of the best model in the model pool, average per-target correlation 

which is the Pearson’s correlation between all models’ real GDT-TS scores and its 

predicted scores, the summation of real TM-score and RMSD scores of the top models 

selected by a QA method, and the summation of real TM-score and RMSD scores  of the 

best of top 5 models selected by QA methods.  

To evaluate the performance of QA methods on ab initio models, we calculated the 

average per-target TM-score and RMSD for the selected best model, and also the selected 

best of top 5 models by QA methods. 

http://www.predictioncenter.org/casp11/index.cgi
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6.4 Results and Discussion 

6.4.1 Comparison of Deep learning with support vector ma-chines and neural 

networks 

We train the deep learning and two other most widely used machine learning 

techniques (Support Vector Machine and Neural Network) separately on our training 

datasets and compare their performance using five-fold cross-validation protocol. 

SVMlight [118] is used to train the support vector machine, and the tool Weka [132] is 

used to train the neural networks. The RBF kernel function is used for support vector 

machine, and the following three parameters are adjusted: C for the trade-off between 

training error and margin, Ɛ for the epsilon width of tube for regression, and parameter 

gamma for RBF kernel. We randomly select 7500 data points from the whole datasets to 

form a small dataset to estimate these parameters of support vector machine to speed up 

the training process. Based on the cross validation result on this selected small dataset, C 

is set to 60, Ɛ to 0.19, gamma to 0.95. For the neural network, we adjust the following three 

parameters: the number of hidden nodes in the first layer (from 5 to 40), the number of 

hidden nodes in the second layer (from 5 to 40), and the learning rate (from 0.01 to 0.4). 

Based on the cross validation result on the entire datasets, we set the number of hidden 

nodes as 40 and 30 for the first and second layer respectively, and the learning rate is set 

to be 0.3. For the deep belief network, we test the number of hidden nodes in the first and 

second layer of RBMs from 5 to 40 respectively, learning rate Ɛ from 0.0001 to 0.01, weight 

cost ω from 0.001 to 0.7, and momentum ν from 0.5 to 0.9. Based on the MAE of cross 

validation result, we find the following parameters with good performance: the number of 
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hidden nodes in the first and second layer of RBMs is set to 20 and 10 respectively, learning 

rate to 0.0001, weight cost to 0.007, and momentum from 0.5 to 0.9. 

The correlation and loss on both stage 1 and stage 2 models of CASP11 datasets 

are calculated for these three methods, and the results are shown in Table 6.2. Deep belief 

network has the best average per-target correlation on both stage 1 and stage 2. The loss of 

DeepQA is also lower than or equal to the other two methods.  The results suggest that 

deep belief network is a good choice for protein quality assessment problem. 

 

 

MAE based on cross 

validation 

Corr. on stage 

1 

Loss on stage 

1 
Corr. on stage 2 

Loss on 

stage 2 

Deep Belief Network 0.08 0.63 0.09 0.34 0.06 

Support Vector Machine 0.12 0.58 0.10 0.32 0.07 

Neural Network 0.08 0.51 0.12 0.25 0.07 

Mean 0.09 0.57 0.10 0.30 0.07 

 

Table 6.2. The accuracy of Deep Belief Network, Support Vector Machines, and Neural 

Networks in terms of MAE based on cross validation of training datasets, the average per-

target correlation, and loss on stage 1 and stage 2 of CASP11 datasets for all three 

difference techniques. 

6.4.2 Comparison of DeepQA with other single-model QA methods on CASP11 

In order to reduce the model complexity and improve accuracy, we do a further 

analysis by selecting good features out of all these 16 features for our method DeepQA. 

First of all, we fix a set of parameters with good performance on all 16 features (e.g, the 

number of nodes in the first and second hidden layer is set to 20 and 10 respectively), and 
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then train the Deep Belief Network for different combination of all these 16 features. Based 

on the MAE of these models in the training datasets, we use the following features which 

has relatively good performance and also low model complexity as the final features of 

DeepQA: Surface score, Dope score, GOAP score, OPUS score, RWplus score, 

Modelevaluator score, Secondary structure penalty score, Euclidean compact score, and 

Qprob score. 

We evaluate the DeepQA on CASP11 datasets, and compare it with other single-

model QA methods participating in CASP11. We use the standard evaluation metrics – 

average per-target correlation and aver-age per-target loss based on GDT-TS score to 

evaluate the performance of each method (see the results in Table 6.3). On stage 1 of 

CASP11, the average per-target correlation of DeepQA is 0.64, which is the same as the 

ProQ2 and better than Qprob. The average per-target loss of DeepQA is 0.09, same as 

ProQ2 and ProQ2-refine, and better than other single-model QA methods. On stage 2 

models of CASP11, DeepQA has the highest per-target average correlation. Its per-target 

average loss is the same as ProQ2, and better than all other QA methods. Overall, the results 

demonstrate that DeepQA has achieved the state-of-the-art performance. 

In order to evaluate how DeepQA aids the protein tertiary structure prediction 

methods in model selection, we apply DeepQA to select models in the stage 2 dataset of 

CASP11 submitted by top performing protein tertiary structure prediction methods. For 

most cases, DeepQA helps the prtein tertiary structure prediction methods to improve the 

quality of the top selected model. For example, DeepQA improves overall Z-score for 

Zhang-Server by 6.39, BAKER-ROSETTASERVER by 16.34, and RaptorX by 6.66. 
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QA methods Corr. on stage 1 Loss on stage 1 Corr. on stage 2 Loss on stage 2 

DeepQA 0.64 0.09 0.42 0.06 

ProQ2 0.64 0.09 0.37 0.06 

Qprob 0.63 0.10 0.38 0.07 

VoroMQA 0.56 0.11 0.40 0.07 

ProQ2-refine 0.65 0.09 0.37 0.07 

Wang_SVM 0.66 0.11 0.36 0.09 

raghavagps-qaspro 0.35 0.16 0.22 0.09 

Wang_deep_2 0.63 0.12 0.31 0.09 

Wang_deep_1 0.61 0.13 0.30 0.09 

Wang_deep_3 0.63 0.12 0.30 0.09 

FUSION 0.10 0.15 0.05 0.11 

Mean 0.55 0.12 0.32 0.08 

 

Table 6.3. Average per-target correlation and loss for DeepQA and other top performing 

single-model QA methods on CASP11. The table is ranked based on the average per-target 

loss on stage 2 of CASP11. 

6.4.3 Case study of DeepQA on ab initio datasets 

In order to assess the ability of DeepQA in evaluating ab initio models, we evaluate 

it on 24 ab initio targets with more than 20,000 models generated by UniCon3D. Table 4 

shows the average per-target TM-score and RMSD for the top one model and best of top 5 

models selected by DeepQA, ProQ2, and two energy scores (i.e., Dope and RWplus), 

respectively.  The result shows DeepQA achieves good performance in terms of TM-score 
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and RMSD compared with ProQ2 and two top-performing energy scores. The TM-score 

difference of best of top 5 models between DeepQA and ProQ2 is significant.  

 

QA methods 

TM-score on top 1 

model 
RMSD on top 1 model 

TM-score on best of top 

5 
RMSD on best of top 5 

DeepQA 0.23 19.01 0.26 17.14 

ProQ2 0.22 19.73 0.25 17.93 

Dope 0.22 19.55 0.24 18.10 

RWplus 0.22 19.68 0.25 17.38 

Mean 0.22 19.49 0.25 17.64 

 

Table 6.4. Model selection ability on ab initio datasets for DeepQA, ProQ2, Dope2, and 

RWplus score. 

6.5 Conclusions 

In this paper, we develop a single-model QA method (DeepQA) based on deep 

belief network. It performs better than support vector machines and neural networks, and 

achieve the state-of-the-art performance in comparison with other established QA methods. 

DeepQA is also useful for ranking ab initio protein models. And DeepQA could be further 

improved by incorporating more relevant features and training on larger datasets. 
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Large-Scale Model Quality Assessment for Improving Protein Tertiary Structure 

Prediction 

 

7.1 Abstract 

Sampling structural models and ranking them are the two major challenges of 

protein structure prediction. Traditional protein structure prediction methods generally use 

one or a few quality assessment methods to select the best-predicted models, which cannot 

consistently select relatively better models and rank a large number of models well. Here, 

we develop a novel large-scale model quality assessment method in conjunction with 

model clustering to rank and select protein structural models. It unprecedentedly applied 

14 model quality assessment methods to generate consensus model rankings, followed by 

model refinement based on model combination (i.e., averaging). Our experiment 

demonstrates that the large-scale model quality assessment approach is more consistent 

and robust in selecting models of better quality than any individual quality assessment 

method. Our method was blindly tested during the 11th Critical Assessment of Techniques 

for Protein Structure Prediction (CASP11) as MULTICOM group. It was officially ranked 

3rd out of all 143 human and server predictors according to the total scores of the first 

models predicted for 78 CASP11 protein domains and 2nd according to the total scores of 

the best of the five models predicted for these domains. MULTICOM’s outstanding 

performance in the extremely competitive 2014 CASP11 experiment proves that our large-
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scale quality assessment approach together with model clustering is a promising solution 

to one of the two major problems in protein structure modeling. The web server is available 

at: http://sysbio.rnet.missouri.edu/multicom_cluster/human/.  

7.2 Introduction 

Protein tertiary structure prediction has been an important scientific problem for 

few decades, especially in bioinformatics and computational biology [123]. Despite more 

and more native structures are included in Protein Data Bank (PDB) [132] database, the 

gap between the sequenced proteins and the native structures is still enlarging due to the 

exponential increase of protein sequences produced by large-scale genome and 

transcriptome sequencing. It is estimated that less than 1% of protein sequences have the 

native structures in PDB database [133]. Therefore, accurate computational methods for 

protein tertiary structure prediction that are much cheaper and faster than experimental 

structure determination techniques are needed to reduce this large sequence-structure gap. 

Furthermore, computational structure prediction methods are important for obtaining the 

structures of membrane proteins whose structures are hard to be determined by 

experimental techniques such as X-ray crystallography [117].  

    The two major problems of protein structure prediction are model sampling and 

model ranking. The former is to generate a number of structural models (conformations) 

for a protein target, and the latter is to rank these models and to select the presumably best 

ones as final predictions. The two main ways of generating protein models are template-

based modeling and template-free modeling. Template-based modeling methods use the 

known structures (templates) of the proteins that are homologous or analogous to a target 

http://sysbio.rnet.missouri.edu/multicom_cluster/human/
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protein to construct structural models for the target [120, 125, 129]. For instance, during 

2014 CASP11 experiment, almost all the structure prediction servers such as I-TASSER 

[15, 128], MULTICOM[60, 125], MUFOLD [86], and RaptorX [119] used the template-

based model technique to predict structures of some CASP11 targets for which some 

homologous template structures could be found. Template-free modeling methods predict 

the protein tertiary structure from scratch without using template information. This is 

especially important when there are no structural homologs existing in the database or the 

template identification techniques cannot find good templates [125]. Some CASP11 

prediction servers such as ROSETTA [87], QUARK [134], and FALCON [19] used 

template-free modeling method to generate structural models for some hard CASP11 

targets.  

    Once some structural models are generated for a protein, the remaining challenge 

is to assess the quality of these models and select the most accurately predicted models. 

There are generally two main kinds of quality assessment (QA) methods: single-model 

quality assessment methods [12, 14, 41, 108, 126, 135], which evaluate the quality of one 

single model without using the information of other models; and multi-model quality 

assessment methods [57, 97, 136, 137], which use the structural similarity between one 

model and other models of the same protein to assess its quality. The multi-model quality 

prediction methods generally perform better than the single-model quality prediction 

methods given the pool of models is sampled by independent structure predictors. 

However, multi-model quality assessment method is largely influenced by the proportion 

of good models in the pool or the average quality of the largest model cluster in the pool, 
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whereas single-model quality assessment methods may work better in assessing a small 

number of models of wide-range quality usually associated with a hard target or a pool of 

models with very low proportion of good ones [137]. 

    Currently, most protein structure prediction methods use one or at most a few 

quality assessment methods to rank and select models, generally leading to the poor 

performance in selecting models of good quality due to the extreme difficulty of ranking 

models and intrinsic limitations of individual quality assessment methods. Some structure 

prediction methods also apply clustering techniques to group models into different clusters 

whose center is considered as the best model in each cluster based on the structural 

similarities. The hypothesis behind it is that near-native structures are more likely clustered 

in a large free-energy basin in the free-energy landscape[121, 122]. The clustering based 

approaches generally select an average model rather than the best model and cannot work 

well if the quality of the largest cluster is not good. Therefore, although numerous methods 

have been developed to assess, rank, and select models, protein model ranking is still 

largely an unsolved problem. 

    In order to address this challenge, we developed a large-scale consensus quality 

assessment method (MULTICOM) to combine 14 complementary model quality 

assessment methods to improve the reliability and robustness of protein model ranking. 

The general model ranking is also synergistically integrated with model clustering 

techniques to increase the diversity and quality of the final selected models. On the very 

competitive 2014 CASP11 benchmark, this new method substantially outperform any 
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single quality assessment method, suggesting its unique value in addressing one major 

problem of protein structure prediction 

7.3 Methods 

7.3.1 Large-scale protein model quality assessment for protein tertiary structure 

prediction 

Methods Type Features 

MULTICOM-NOVEL Single Structural, physical, chemical features 

OPUS-PSP S Contact potentials based on side chain functional groups 

ProQ2 S Structural features 

RWplus S Side-chain orientation dependent potential 

ModelEvaluator S Structural features, contacts 

Modelcheck2 S Structural features, contacts, disorder, conservation 

RF_CB_SRS S Distance dependent statistical potential 

SELECTpro S Energy-based (h-bond, angle, electrostatics, vdw) 

Dope S Statistical potential 

DFIRE2 S Energy-based potential 

ModFOLDclust2 Multi Pairwise model similarity (geometry) 

APOLLO M Pairwise model similarity 

Pcons M Pairwise model similarity 

QApro M+S Weighted pairwise model similarity 

MULTICOM (human) Consensus Average ranking 

 

Table 7.1. All 14 QA methods with the details. The highlighted methods are built in house. 

S: single-model method; M: multi-model method 

 

Given a pool of structural models generated for a target protein (e.g. hundreds of 

models generated for a CASP11 target), the MULTICOM method used unprecedentedly 

14 complementary model quality assessment (QA) methods to predict the quality score of 

each model first (Table 7.1). These QA methods include both single-model and multi-
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model QA methods. The single-model methods include our new single-model global 

quality assessment method MULTICOM-NOVEL based on the difference between 

secondary structure and solvent accessibility predicted by Spine X[114] and SSpro4[115] 

from the protein sequence and those of a model parsed by DSSP[106], physical-chemical 

features (i.e., surface polar score, weighted exposed score, and etc.)[113], the normalized 

quality score generated by ModelEvaluator[108], RWplus score[12], dope score[14], and 

RF_CB_SRS_OD score[11]; ProQ2 [41]; Model check2 method produced by an improved 

version of ModelEvaluator [108]; a recalibrated SELECTpro energy [135]; Dope [14]; 

DFIRE2 [90]; OPUS_PSP [138]; Rwplus [12]; ModelEvaluator [108] and 

RF_CB_SRS_OD [11]. The multi-model QA methods include ModFOLDclust2 [97]; 

Pcons [57]; APPOLLO [136]; QApro - a weighted combination of ModelEvaluator and 

APOLLO [137]. The details of each method are described in Table 7.1. 

During the 2014 CASP11 experiment, MULTICOM used two different 

combinations of the QA scores produced by 14 QA methods to generate consensus 

rankings to rank all models of each target. The first one is the complete combination, in 

which each of 14 QA methods was applied to all the models of a target and generated a 

ranking for them based on their QA scores, and the average rank of 14 ranks of each model 

assigned by the 14 QA methods was used as its final rank. The second one is the consensus 

rankings based on the same average ranks produced by only six QA methods including 

(MULTICOM-NOVEL QA score, QApro score, Pcons score, Modelcheck2 score, Dope 

score, OPUS_PSP score). These six methods were selected because their combination 

performed best on all the models of 46 CASP10 when all possible combinations were 
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benchmarked before CASP11 experiment started. On these CASP10 models, the average 

loss score of top one model based on 6 QA methods is 0.037, lower than 0.057 of all 14 

QA methods. However, considering that the optimization process in benchmarking could 

over fit the data, we let MULTICOM use the consensus rankings of both the 6 selected QA 

methods and all 14 QA methods.  

During the modeling ranking process, if the same top one model was selected by 

the two consensus rankings, which happened in more than 50% cases, the consensus 

ranking of the 6 QA methods were used as the final ranking of all the models. But if they 

disagreed with each other, the score of top 1 model selected by the pairwise QA method 

APOLLO was used to break the tie as follows. On one hand, if the score of APOLLO’s top 

one model was > 0.3, which generally meant quite some models in the model pool were of 

good quality due to relatively high pairwise similarity between them, the final ranking was 

set as the consensus ranking of the 6 QA methods or all 14 QA methods depending on 

whose top one model was more similar to the top one model of APOLLO than the other. 

Furthermore, the top one models of the two consensus rankings and of the top predictors 

(e.g., MULTICOM-CLUSTER and Zhang-Server) were compared with the top one model 

of APOLLO, and the model most similar to the top one model of APOLLO was used the 

top one model in the final ranking without changing the ranking of all other models. On 

the other hand, if the score of the top one model selected by APOLLO was <= 0.3, which 

only occasionally happened and suggested that the target was hard and most models were 

of bad quality, MULTICOM calculated the percent of matching between the secondary 

structures extracted from the top one model selected by either 6- or 14-QA consensus 
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ranking with the secondary structure of the target predicted from its sequence. The final 

ranking was one of 6 or 14 consensus ranking whose top one model had the higher 

percentage of matching of secondary structures.  

Since the top five models selected by the final ranking above sometime could be 

very similar to each other, the risk for all of them to fail altogether was high for hard targets. 

To reduce this risk, MULTICOM only kept the top two models of the final ranking as the 

two predicted structures. And then, in order to increase the diversity of top five models 

selected as final predictions for each target, MULTICOM used MUFOLD_CL[3] to cluster 

models, and then selected the other three models according to the final ranking in separate 

clusters different from those of the top two models. MUFOLD-CL [3] is a model clustering 

method based on the comparison of the protein distance matrices. Comparing with other 

clustering techniques based on structural distance such as RMSD[139], it is much faster, 

but yields similar accuracy, which is desirable for clustering a large number of protein 

models. During the selection of the other three models from different clusters, 

MULTICOM also skipped the models ranked at bottom 10% according to our newly-

developed MULTICOM-NOVEL QA method. This guaranteed that the top five selected 

structures were largely different, which indeed improved the score of the best of top five 

models.    

Finally, MULTICOM used a model combination approach [118] to integrate each 

selected model with other similar models in the model pool to generate its refined model. 

The workflow of our MULTICOM method described above is illustrated in Figure 7.1. 



141 

 

 

Figure 7.1.  The workflow of the MULTICOM method comprised of six steps. 
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7.3.2 Evaluation of top ranked models 

We downloaded publically available native structures for 42 CASP11 human 

targets from the CASP’s website (http://www.predictioncenter.org/casp11/index.cgi). 

During CASP11, our MULTICOM method was blindly benchmarked on these targets 

together with 142 human and server predictors.  The predicted structural models were 

assessed on 55 domains of the 42 targets.  For comparison, we downloaded both the other 

predictors’ predictions and our submitted predictions from the CASP11’s website. During 

CASP11, each predictor submitted up to five predicted model with the first one (TS1) 

designated as the best model. We evaluated the performance of each predictor’s first model 

by calculating the GDT-TS score between it and its native structure. The TM-score[107] 

was used for calculating the GDT-TS score. The Z-score of a model was calculated as the 

model's GDT-TS score minus the average GDT-TS score of all the models in the model 

pool of a target divided by the standard deviation of all GDT-TS scores. The negative Z 

score was converted to 0 during summation of Z-scores. The sum of the Z-scores of the 

first models predicted by a predictor for the 42 targets was used to measure its overall 

performance. Similarly, the sum of the Z-scores of the best of the five submitted models 

predicted by a predictor for the 42 targets was used to measure its performance if the best 

of all five submitted models was considered. 

7.4 Results and Discussions 

We evaluated the performance of MULTICOM human predictor along with 44 

CASP11 server predictors on 42 CASP11 human targets. The sum of Z-scores of all first 

(i.e. TS1) models or the best of five submitted models predicted by these predictors was 

http://www.predictioncenter.org/casp11/index.cgi
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reported in Table 7.2. Other human server predictions were not considered in the analysis 

here since they were not publicly available. It is shown that MULTICOM performs better 

than all server predictors. Its total Z-score of first models is around 4 points higher than the 

best server predictor Zhang-Server, and its total Z-score of the best of five models is >6 

points higher than the best server predictor QUARK. These results demonstrate 

MULTICOM’s ability to rank a large pool of models for selecting top one or five models. 

According to CASP11’s official evaluation of all 143 human and server predictors, 

MULTICOM was ranked 3rd based on the sum of Z-score of the first model and 2nd based 

on the sum of Z-score of best of the five submitted models. The MULTICOM’s outstanding 

performance in the extremely competitive CASP11 experiment demonstrates that our 

large-scale model quality assessment is powerful for ranking and selecting good models 

from a pool of models of different quality. 

 

Server name Sum of Z/rank Sum of Z of best of five/rank 

MULTICOM (human) 57.49/1 78.42/1 

Zhang-Server 53.62/2 70.57/3 

QUARK 51.90/3 71.93/2 

Nns 35.07/4 51.79/6 

myprotein-me 34.11/5 52.73/5 

MULTICOM-CLUSTER 31.39/6 39.03/10 

MULTICOM-CONSTRUCT 31.33/7 38.65/11 

RBO_Aleph 30.77/8 40.65/9 

BAKER-ROSETTASERVER 28.80/9 63.64/4 

MULTICOM-NOVEL 25.71/10 43.43/7 

 

Table 7.2. The top 10 tertiary structure predictors ranked based on the summation of the Z-

scores of the first models, and their summation of the Z-scores of best of the five submitted 

models 
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Rank Servers on all human targets Num. on all Servers on TBM Num. on TBM 

1 Zhang-Server 58 Zhang-Server 43 

2 BAKER-ROSETTASERVER 36 BAKER-ROSETTASERVER 27 

3 QUARK 29 QUARK 22 

4 RBO_Aleph 29 myprotein-me 20 

5 myprotein-me 28 Nns 19 

6 Nns 21 Seok-server 14 

7 Seok-server 17 RBO_Aleph 13 

8 MULTICOM-REFINE 10 MULTICOM-REFINE 8 

9 FUSION 7 RaptorX 4 

10 RaptorX 5 FUSION 4 

 

Table 7.3. The top 10 predictors ranked based on the total number times their models were 

selected by our MULTICOM predictor on all the human targets or template-based (TBM) 

human targets only 

 

QA method  Ave. GDT-TS score 

on all 

Ave. GDT-TS score 

on TBM 

Ave. Z score 

on all 

p-value of Z score 

diff. 

Ave. Z score 

removed 

 

MULTICOM 0.374 0.425 1.364 - -  

Consensus of 14 QA scores 0.369 0.420 1.217 - -  

Consensus of 14 Z-scores 0.357 0.402 1.406 - -  

SELECTpro 0.351 0.407 0.893 1.831e-05 1.338  

ProQ2 0.343 0.387 0.887 1.19e-02 1.365  

MULTICOM-NOVEL 0.340 0.383 0.861 5.612e-03 1.321  

ModFOLDclust2 0.339 0.399 0.734 2.074e-04 1.356  

APOLLO 0.338 0.403 0.584 9.331e-05 1.379  

Dope 0.334 0.382 0.819 1.861e-03 1.360  

Pcons 0.333 0.397 0.565 1.831e-05 1.325  

ModelEva 0.333 0.378 0.870 9.840e-03 1.334  

Dfire2 0.329 0.367 0.826 1.662e-03 1.360  

QApro 0.328 0.371 0.783 2.889e-02 1.430  

RWplus 0.327 0.373 0.752 5.193e-04 1.365  

OPUS-PSP 0.326 0.366 0.793 5.784e-03 1.356  

RF_CB_SRS 0.300 0.343 0.372 7.13e-05 1.365  

Modelcheck2 0.297 0.347 0.559 1.192e-02 1.340  

 

Table 7.4. Comparison of MULTICOM with each QA method and the two different 

consensus methods (one based on 6 QA methods and another one based on 14 QA methods) 

on the average GDT-TS score and Z-score of the top models selected, and the significance 
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of difference between each QA method and MULTICOM. Italic font denotes single-model 

methods. 

 

In order to investigate types of the models selected by MULTICOM and the 

contribution of individual structure predictors, we calculated the number of times that the 

models predicted by each predictor were ranked within top five by MULTICOM. Table 

7.3 shows the contribution of top 10 server predictors whose models were selected by 

MULTICOM to refine to generate the final predictions. It shows that a diverse set of server 

predictors including Zhang-Server made significant contributions to the final prediction, 

suggesting the large-scale quality assessment used by MULTICOM can reliably assess a 

very diverse set of models generated by different tertiary structure predictors in the field. 

To study how our large-scale model quality assessment method improves model 

ranking, we compared its performance with that of each individual QA method and the two 

other simple consensus methods (one based on the sum of 14 original QA scores and 

another based on the sum of 14 Z-scores calculated from original scores). The first two 

columns in Table 7.4 reports the average GDT-TS score of the first models selected by 

these QA methods for all 42 human targets and a subset of 30 template based human 

targets, respectively. The results show that MULTICOM performs better than every 

individual QA method, and sometime the improvement is substantial. And not surprisingly, 

the multi-model quality assessment methods outperformed single-model quality 

assessment methods on template based human targets whose model pool was often of good 

quality. For instance, a multi-model QA method APOLLO ranks 6th on all human targets, 
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but 3rd on template based human targets. The third columns in Table 7.4 shows the average 

Z-score of the first models selected by different QA methods. It is interesting to notice that 

the single-model QA methods tend to have higher Z-score than the multiple-model QA 

methods. For example, the multiple QA method APOLLO has a relatively high average 

GDT-TS score (0.338) of the first selected models, however, its average Z-score of the first 

selected models is lower than most single QA methods. The reason is probably because the 

multiple-model QA methods tend to work well on easy targets whose models have 

similarly good quality and thus low Z-scores, whereas single-model QA methods may 

select some good models for some hard targets whose models are mostly bad, resulting in 

a high Z-score.   

Considering average ranking is just one way of combining different QA scores, we 

tested another two ways to combine QA scores for comparison. The first one simply 

calculated the average of original 14 QA scores to rank models. The second one first 

converted all original QA scores of each method into Z-scores, and then used the average 

of 14 Z-scores to rank models. Table 7.4 shows that consensus of 14-QA Z-scores 

performed best in terms of the average Z-score of the top one models, whereas 

MULTICOM performed best in terms of the average GDT-TS score of the top one models. 

The results demonstrate that the way of integrating different QA scores influences the 

quality of the final ranking.  

Moreover, we compared MULTICOM with a simple combination approach that 

used a good single-model QA method (i.e. ProQ2) to rank models of very hard targets and 

a good clustering method (APOLLO) to rank the models of other targets. If the maximum 
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APOLLO pairwise score of the models of a target is < 0.2, it is considered a hard target, 

otherwise an easy target. The average Z-score and GDT score of the top 1 model selected 

by this simple combination method is 0.980 and 0.350, respectively, which is higher than 

that (0.584 and 0.338) of APOLLO, but substantially lower than that (1.364 and 0.374) of 

MULTICOM.  

Furthermore, compared to the two other top-ranked consensus methods 

participating in CASP11 experiment - TASSER (ranked 9th in CASP11) and keasar (ranked 

27th) that useD several QA methods according to the official CASP11 experiment, 

MUTLICOM was rank 3rd, demonstrating its effectiveness and robustness.   

    We also used Wilcoxon signed ranked sum test to assess the significance of the 

difference between MULTICOM and each individual QA method. The fifth column of 

Table 7.4 shows p-value of the top one model’s Z-score difference between MULTICOM 

and each QA method. According to 0.05 threshold, MULTICOM performed significantly 

better than any individual QA method.  

In addition, in order to test the impact of each single-model QA method on the 

performance of the consensus approach, we tested how removing each QA method may 

change the average Z-score of top 1 model selected by the consensus ranking of the 

remaining 13 QA methods. The results were in Column 6 in Table 7.4. According to the 

results, the removal of MULTICOM-NOVEL caused the biggest decrease in the average 

Z-score of top one models selected by the consensus method. 

Moreover, we counted the total number of times one QA method selected better 

models than all other QA methods. In the cases where more than one QA method selected 
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the same better model, all of them were counted as better than others methods once. Table 

7.5 shows that MULTICOM consistently selected better top models more frequently than 

any other QA method.  Interestingly, SELECTpro only selected better model once (Table 

7.5), yet it had the higher average GDT-TS scores for all the top one models than the other 

13 individual QA methods (Table 7.4), suggesting that SELECTpro selected top models 

with relatively higher GDT-TS score for most targets, but not necessarily the best models 

compared with other individual QA methods. 

QA methods  Frequency on all targets QA methods Frequency on TBM 

MULTICOM 17 MULTICOM 11 

QApro 12 QApro 8 

ProQ2 11 ModelEva 7 

ModelEva 9 ProQ2 7 

Dfire2 9 Dope 7 

Dope 9 RWplus 6 

RWplus 8 Dfire2 6 

MULTICOM-NOVEL 8 MULTICOM-NOVEL 6 

OPUS-PSP 8 OPUS-PSP 6 

Modelcheck2 4 APOLLO 4 

RF_CB_SRS 4 Modelcheck2 3 

APOLLO 4 RF_CB_SRS 3 

ModFOLDclust2 3 ModFOLDclust2 3 

Pcons 2 Pcons 2 

SELECTpro 1 SELECTpro 1 

 

Table 7.5. The total number times that each QA method performed better than other QA 

methods on all human targets or all template based (TBM) human targets only. Italic 

denotes single-model methods. 
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Figure 7.2.  Tertiary structure prediction of domain 2 of T0783 (T0783-D2). (A) The 

superposition of the MULTICOM human TS1 model on domain 2 with the native structure. 

(B). The distribution of 191 models in the model pool. (C). The plot of the true GDT-TS 

scores of models against their predicted ranking. 

 

In addition to assessing the overall performance, we specifically investigated two 

examples to illustrate how MULTICOM assessed the quality of the models of the following 

two targets. The first case is T0783-D2 (domain 2 of Target T0783). Figure 7.2(A) 

illustrates the distribution of the GDT-TS scores of the models of this domain, where most 

of the models actually have the true GDT-TS score less than 0.2 (i.e. very low quality), 
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some models have the GDT-TS score around 0.4 (medium quality), and a few models have 

GDT-TS score 0.6 (relatively good quality). Figure 7.2(B) is the plot of true GDT-TS 

scores of these models against their ranking predicted by MULTICOM. It is shown that 

MULTICOM ranked the best model with the highest GDT-TS score (e.g. nns_TS1) as no. 

1.  In this case, all the individual single QA methods ranked this model within top 5, but a 

pairwise method ranked it at no. 19. Combining these individual rankings, the consensus 

ranking predicted by MULTICOM was able to select this model to combine with other 

three similar models (nns_TS3, nns_TS2, and FFAS-3D_TS1) to generate a refined model 

as final prediction. Figure 7.2(C) is the superposition of this model with the native 

structure, which is an alpha-best-alpha protein. Our final model has a well-predicted four-

strand beta-sheet in the middle and two well-positioned alpha helices in periphery. The 

final GDT-TS score of this model is 0.625. 

The second case is T0767-D1 (domain 1 of Target T0767). Figure 7.3(A) shows 

the distribution of the true GDT-TS score for the whole model pool. Most models are of 

low quality (i.e. the true GDT-TS score around 0.25), which makes model quality 

assessment difficult. Therefore, three pairwise QA methods (APOLLO, Pcons, and 

ModFOLDclust2) failed to rank the models of good quality at or near the top, whereas 

some single-model quality assessment methods ranked them higher. Figure 7.3(B) is the 

plot of the true GDT-TS scores of these models against their ranking predicted by 

MULTICOM. It is shown that our large-scale model quality assessment combining both 

single- and multi-model QA methods was able to rank the third best model at the top, even 

though it missed the best model BAKER-ROSETTASERVER_TS2 in the model pool. The 
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initial model selected by MULTICOM was Zhang-Server_TS5 with GDT-TS score 

0.5658. Figure 7.3(C) visualizes the superposition of the predicted model and the native 

structure. It is shown that the beta sheet was predicted rather accurately, whereas the alpha 

helices were only partly correctly predicted. 

 

 

Figure 7.3.  Tertiary structure prediction of domain 1 of T0767 (T0767-D1). (A) The 

superposition of the MULTICOM human TS1 model on domain 1 with the native structure. 

(B). The distribution of 195 models in the model pool. (C). The plot of the true GDT-TS 

scores of models against their predicted ranking. 
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Finally, we investigated if the model combination could refine and improve the 

quality of the selected models. Figure 7.4 shows the difference between the initial GDT-

TS scores of the models before refinement and the GDT-TS scores of the final models after 

the refinement process on 42 CASP11 human targets. The GDT-TS scores of the models 

of 19 targets were increased by the model combination, those of another 19 targets were 

decreased, and those of the remaining 4 targets stayed the same. The average change of 

GDT-TS scores of all 42 targets was 0, suggesting the refinement process did not improve 

the global quality of the models on average, which is consistent with the observation on 

the performance of most current model refinement protocols [140]. 

 

Figure 7.4.  The plot of the difference between the initial GDT-TS scores before model 

combination and the GDT-TS scores after model combination against the initial GDT-TS 

scores of top one models of 42 targets 
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7.5 Conclusions 

We developed a large-scale model quality assessment technique in conjunction 

with model clustering and refinement to improve protein tertiary structure prediction. 

Inspired by the previous work [141] that integrated several primary QA methods, our 

method that combined a large number of protein model quality assessment methods 

reliably and consistently improved protein model ranking – one of the major challenges of 

protein structure prediction. For the first time, we demonstrate that this large-scale 

consensus QA approach is more robust and accurate than any individual quality method by 

integrating their strength together.   Our tertiary structure prediction based on this method 

outperformed all the server predictors during the very competitive CASP11 experiment in 

2014. The CASP11 official assessment also ranked our method as one of the top three best 

tertiary structure prediction methods on all the CASP11 human targets. This outstanding 

performance demonstrates our large-scale model quality assessment approach is a 

promising direction to advance the state of the art of protein model ranking and selection. 

Moreover, our approach adopts an open quality assessment system, into which, adding 

more complimentary methods may potentially improve the ranking, but incorporating 

redundant methods does not necessarily lead to an improvement. However, our general 

combination approach demonstrates the importance of developing more individual QA 

methods and the possibility of optimally combining them together to advance the field of 

protein structure prediction. 
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Massive integration of diverse protein quality assessment methods to improve 

template based modeling in CASP11 

 

8.1 Abstract 

Model evaluation and selection is an important step and a big challenge in template-

based protein structure prediction. Individual model quality assessment methods designed 

for recognizing some specific properties of protein structures often fail to consistently 

select good models from a model pool because of their limitations. Therefore, combining 

multiple complimentary quality assessment methods is useful for improving model ranking 

and consequently tertiary structure prediction. Here, we report the performance and 

analysis of our human tertiary structure predictor (MULTICOM) based on the massive 

integration of 14 diverse complementary quality assessment methods that was successfully 

benchmarked in the 11th Critical Assessment of Techniques of Protein Structure prediction 

(CASP11). The predictions of MULTICOM for 39 template-based domains were 

rigorously assessed by six scoring metrics covering global topology of Cα trace, local all-

atom fitness, side chain quality, and physical reasonableness of the model. The results show 

that the massive integration of complementary, diverse single-model and multi-model 

quality assessment methods can effectively leverage the strength of single-model methods 

in distinguishing quality variation among similar good models and the advantage of multi-

model quality assessment methods of identifying reasonable average-quality models. The 
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overall excellent performance of the MULTICOM predictor demonstrates that integrating 

a large number of model quality assessment methods in conjunction with model clustering 

is a useful approach to improve the accuracy, diversity, and consequently robustness of 

template-based protein structure prediction. 

8.2 Introduction 

In the genomic era, high-throughput genome or transcriptome sequencing 

technologies have generated a large amount (~100 million) of protein sequences. It is 

important to obtain the tertiary structures of these protein sequences in order to understand 

their biochemical, biological and cellular functions[81, 82, 142]. Experimental techniques 

(e.g. X-ray crystallography or NMR spectroscopy) can determine protein structures. 

However, these techniques cannot solve the structures of all proteins because they are 

relatively expensive and time consuming. Thus far, only a small portion of proteins 

(~99,000) have experimentally verified structures. Therefore, cheaper and faster computer-

assisted prediction of protein tertiary structures is becoming increasingly popular and 

important[143-147].  

Computational prediction methods of protein tertiary structures generally fall into 

two categories: template-based modeling and template-free modeling. Template-based 

modeling methods generate the tertiary structure for a target protein by identifying its 

homologous structure templates and transferring the template structures to the structure of 

the target for further refinement[89, 148, 149]. These methods are the most widely used 

protein modeling methods, and their predictions are relatively accurate and usable if good 

homologous templates could be found. If no homologous templates could be found for a 
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target protein, template-free modeling methods are employed to construct structural 

models for the target protein from scratch or from the combination of small structural 

fragments[148, 150]. Since 1994, every two years both template-based and template free 

modeling methods (e.g. [122, 151],[152],[139],[119],[134],[121]) were blindly and 

rigorously evaluated in the Critical Assessment of Protein Structure Prediction (CASP) 

experiments. In this work, we report our findings and analyses regarding the template-

based predictions of our MULTICOM predictor based on massive integration of diverse 

and complementary protein model quality assessment methods in the CASP11 experiment 

held in 2014.   

Evaluating the quality of predicted models and selecting the most accurate ones 

from them is an important step and a big challenge in protein structure prediction. There 

are two typical kinds of protein model quality assessment (QA) methods: single-model 

quality assessment method and multi-model quality assessment method [9]. Single-model 

quality assessment methods[9, 10, 41, 98, 100, 107, 121, 134, 150, 153, 154] evaluate the 

quality of a single model without referring to other models and assigned it a global quality 

score. Multi-model quality assessment methods [94, 95, 97, 136, 155-157] (also called 

clustering based methods) evaluate the predicted models for a target protein based on their 

pairwise structural similarity. For instance, some multi-model quality assessment methods 

[156, 157] employ clustering techniques to cluster models into different groups according 

to their structural similarities, and then select the center model in each group as the 

presumably best model most similar to the native structure. 
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Because of the difficulty of predicting the real quality of a predicted protein model 

and the limitation of current techniques, one individual QA method generally cannot select 

the best model from the model pool. For example, single model QA methods may not be 

sensitive enough to rate a largely correct topology with significant local structural flaws 

higher than a native like but incorrect topology. Multiple model QA methods often fail 

when the majority of the predicted models is of bad qualities and is structurally similar to 

each other [9]. The model selected by the clustering-based methods usually is not the best 

model if models in the largest cluster are of bad quality.  

Therefore, some protein tertiary structure prediction methods in recent CASP 

experiments tried to use the consensus of QA methods to evaluate the predicted models. 

For example, Zhang-Server [155] evaluated the predicted models using the consensus score 

of seven MQAP methods (e.g. the I-TASSER C-score [122], structural consensus 

measured by pair-wise TM-score[107], RW[12], RWplus[12], Dfire[158], Dope[14], 

verify3D[154]). MUFOLD[159] used three single-model QA methods (e.g. OPUS-

CA[160], Dfire[158], ModelEvaluator[108]) to filter out poor models and then used 

consensus QA method (e.g. clustering) to evaluate the remaining models. Pcons[57] 

combined structural consensus[39] with a single model machine learning-based QA 

method ProQ2[41] to evaluate the predicted models. Combining multiple quality 

assessment methods appeared to be an important approach to improve model evaluation as 

demonstrated in the CASP experiments. However, more extensive and sophisticated 

methods of integrating a large number of diverse and complementary QA methods need to 

be developed and analyzed.  
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Here we conduct a thorough analysis of our recently developed tertiary structure 

prediction methods based on a large-scale protein model quality assessment method – 

MULTICOM[161] on its template-based model predictions in 2014 CASP11 experiment 

in order to investigate the strengths and weaknesses of massive quality assessment 

methods. Unlike other tertiary structure prediction methods using only one or several 

model quality assessment methods, MULTICOM integrated 14 complementary QA 

methods, which included both single-model QA methods and multi-model QA methods. 

Our tertiary structure prediction method participated in the CASP11 experiment as a human 

predictor and was ranked as one of top few methods for template-based protein structure 

modeling. The results indicate that the combination of the array of QA methods in 

conjunction with good model sampling and clustering is a promising direction for 

improving protein tertiary structure prediction. 

8.3 Methods 

Our MULTICOM method (human group MULTICOM in CASP11 experiment), 

although categorized as MULTICOM human predictor, is largely an automated method.  

MULTICOM’s success, primarily, is because of exploiting appropriate use and 

combination of existing QA methods some of which we developed in house to complement 

existing methods, and not because of human intervention. Although the method has been 

discussed briefly in[161], here we discuss it comprehensively with an emphasis on the 

details of the method and an extensive evaluation strategy. 
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8.3.1 Massive protein model quality assessment for ranking protein structural 

models 

Figure 8.1 provides an overview of the entire workflow of MUTLICOM. 

MULTICOM takes a pool of structural models predicted by a variety of available protein 

structure prediction tools as input. This pool of models is supplied in parallel to both 

individual QA ranking methods and a model clustering tool - MUFOLD-CL[162]. The 

rankings generated by all QA methods are combined to obtain two consensus rankings. 

Since the consensus rankings may put similar models in the top ranks, in order to increase 

diversity in the top five selected models, the model clustering information is used to replace 

some similar top-ranked models with structurally different models from other model 

clusters if necessary. The final selected models are further refined by  a model combination 

approach[163]. 

Specifically, in CASP 11 experiment we used the hundreds of models for each 

target predicted by all CASP participants as input. Input models are first ranked by existing 

and our in-house developed single-model and multiple-model quality assessment (QA) 

methods - a total of 14 QA methods[161] whose software were available. These include 8 

single-model methods, see Table 8.1, two in-house single-model QA methods: (a) 

MULTICOM-NOVEL, and (b) Modelcheck2 - an improved version of ModelEvaluator 

score[108]. We also use 4 multiple-model QA methods: (a) ModFOLDclust2[97], (b) 

APOLLO[136], (c) Pcons[57], and (d) QApro[9].  
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Method Description 

OPUS-PSP[138] Method based on side-chain derived orientation-dependent all-atom statistical potential 

ProQ2[41] Uses support vector machines to predict local as well as global quality of protein models; 

features of ProQ combined with updated structural and predicted features 

RWplus[12] Method based on a new pair-wise distance-dependent atomic statistical potential function (RW) 
and side-chain orientation-dependent energy term 

ModelEvaluator[108] Uses only structural features with support vector machine regression; assigns absolute GDT-TS 

score to a model by comparing secondary structure, relative solvent accessibility, contact 
map ,and beta sheet topology with prediction from sequence 

RF_CB_SRS_OD[11] Uses residue-based pairwise distance dependent statistical potential at various spatial pair 

separations 

SELECTpro[164] Structure-based energy function with energy terms that include predicted secondary structure, 
solvent accessibility, contact map, beta-strand pairing, and side-chain hydrogen bonding 

Dope[14] Uses probability theory to derive an atomic distance-dependent statistical potential 

DFIRE2[64] Based on statistical energy function that uses orientation –dependent interaction from protein 
structures treating each polar atom as dipole 

Table 8.1. Publicly available single-model QA methods used in our MULTICOM method. 

 

Figure 8.1.  Workflow of MULTICOM large-scale model quality assessment method. 

The integration of both single-model QA methods and multi-model QA methods is 

to leverage the strengths of the two kinds of methods and alleviate their weaknesses in 

order to rank models better than any of the individual method. The single-model methods 

may distinguish quality variation among good models, but may mistakenly favor a 

physically appealing, but low-quality models over largely correct models with significant 

local flaws. In contrast, the multi-model methods can often select some good models of 

average quality, but fail to identify models of better-than-average quality.  

The rankings obtained using these individual methods are combined in two ways: 

(a) a mean is computed for each model to produce an average ranking of all 14 methods, 
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(b) rankings of only 6 selected methods are used to produce an average ranking. The 

selected 6 methods include 4 single-model QA methods, MULTICOM-NOVEL, 

Modelcheck2, Dope[14], and OPUS_PSP[138], and 2 multiple-model methods, QApro, 

and Pcons. Before the CASP11 experiment started, we tested all possible ways of 

combining the rankings on the data of 46 CASP10 targets, and found that combination of 

these selected 6 methods resulted in the lowest average loss of 0.037 GDT-TS score for the 

top one selected models in comparison with the best possible models, 0.02 GDT-TS score 

lower than combination of all 14 methods. However, since the benchmark testing was not 

comprehensive and may overfit the data, we retained both consensus approaches in our 

overall method for CASP11 experiment. 

During CASP11, in order to choose between 6-methods based consensus and all 

14-methods based consensus for our overall method, we predict the ‘difficulty’ of the target 

using the multi-model QA tool APOLLO in order to use separate methods for ‘hard’ and 

‘easy’ cases[161]. APOLLO’s score of greater than 0.3 generally hints higher quality of 

models because of high pairwise similarity between them, for example, when matching 

templates are found for the target. Hence, if APOLLO’s similarity score for top ranked 

model is greater than 0.3, we compare this top model with the two top ranked models 

ranked by 6-method and all 14-method consensus, and finally select the ranking whose top 

model is more similar to APOLLO’s top model. Here, in addition to using APOLLO to 

break the ties between the two consensus methods, the other rational is to filter out models 

of an incorrect topology that the consensus methods may accidentally rank at the top due 

to their use of many single-model quality assessment methods, by taking advantage of 
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APOLLO’s capability of selecting a good model in the case of easy prediction. According 

to our experiment on the CASP10 data, if the highest pairwise similarity score of the 

models measured by APOLLO is greater than 0.3, which often suggests the prediction is 

relatively easy, the top model selected by APOLLO generally has a good, but not 

necessarily the best topology. So, the idea of using the top model selected by APOLLO to 

re-rank the top models of the consensus methods here is to make sure the bad models with 

incorrect topologies selected by those methods will be completely ruled out. So, instead of 

directly using APOLLO’s ranking, APOLLO is only used to provide some auxiliary 

information to make sure one of the top models ranked by those methods would be correct 

when the prediction is relatively easy. Overall, the ranking of models is largely dominated 

by the two consensus methods, which performed better than using APOLLO score alone.  

Furthermore, in order to further improve the reliability of the top one model, the 

top one models of the two consensus rankings and of the top server predictors (e.g., 

MULTICOM-CLUSTER and Zhang-Server) were compared with the top one model of 

APOLLO, and the model most similar to the top one model of APOLLO was used as the 

top one model in the final ranking without changing the ranking of all other models. 

However, if APOLLO’s pairwise score for the top ranked model is less than or equal to 

0.3, we consider the target to be ‘hard’, and use ab initio biased decision to make the 

selection of consensus ranking. For this, we predict secondary structure of input target 

sequence using PSIPRED[99, 165] and compare this with secondary structure of top ranked 

models in both consensus rankings by computing accuracy. Again, we select the consensus 

ranking whose top model has higher secondary structure similarity with predicted 



163 

 

secondary structure. Despite the seemingly complexity of the modeling ranking strategy 

used by MULTICOM, the selection of top one model was largely determined by the two 

consensus methods with some influence from the other factors such as APOLLO’s ranking 

scores, top server predictors’ top models, and predicted secondary structures.  

After selection of the appropriate ranking, instead of simply using top 5 ranked 

models as final rank, we use model clustering information to increase diversity in the top 

5 list of models which is important especially for hard targets whose real structure is often 

very uncertain. As top five models selected by the approach above may be similar, if one 

is incorrect, all of them will fail.  Therefore, it useful to include different models in the top 

five list. As such, MULTICOM always keeps the top two ranked models. If the model 

ranked third belongs to any of the clusters that the previously selected models belong to, it 

will be removed from the complete rank and the remaining ranking below is lifted up 

repeatedly until we find a model in a different cluster. The process is repeated for fourth 

and fifth ranks ensuring diversity in the final top five models. In addition, we employed a 

model filtering technique to ensure that low quality models do not make their way up to 

the top 5 ranks. That is, during the re-ranking process, models that were ranked at bottom 

10% by our in-house MULTICOM-NOVEL QA method were skipped because those 

models were mostly bad models such as largely unfolded models according to our 

experiment. Clustering is performed based on structural similarity of the models using 

MUFOLD-CL[162], a model clustering method based on the comparison of protein 

distance matrices. Our comparison of MUFOLD-CL with other techniques based on 
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structural distance like RMSD[166], show similar accuracy but MUFOLD-CL runs much 

faster.  

As the last step of MULTICOM method, a model combination approach is used to 

integrate each selected model with other similar models in the pool to obtain a refined 

model[163].  Basically, the Modeller is used to use each selected model and other similar 

models as templates to regenerate a number of combine models for a target. The model 

with minimum Modeller energy is selected as the refined model. 

8.3.2 Summary of some individual QA methods used by MULTICOM 

APOLLO, one of the 4 multiple-model methods we use, generates a pair-wise 

average GDT-TS score by performing a full pairwise comparison between all input models. 

The predicted GDT-TS score for a model is the average GDT-TS score between the model 

and all other models in the model pool. For models that are incomplete predictions (only 

parts of the target are predicted), the score is scaled down by the ratio of the models’ 

sequence length divided by the target length. ModFOLDclust2, another multiple model 

method, uses mean score of the global predicted model quality scores from the clustering 

based method ModFOLDclust and ModFOLDclustQ as its score to rank models. The Pcons 

protocol, on the other hand, analyzes input models looking for recurring three-dimensional 

structural patterns and assigns each model a score based on how common its three-

dimensional structural patterns are in the whole model pool. Specifically, it estimates the 

quality of residues in a protein model by superimposing a model to all other models for the 

same target protein and calculating the S-score for each residue[57], which positively 

correlates with the level of recurrence of local conformations. Pcons predicts the global 
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quality of a model by assigning a score reflecting the average similarity to the entire 

ensemble of models. The principle of Pcons is that recurring patterns are more likely to be 

correct than patterns that only occur in one or just a few models. The multiple model 

method, QApro, combines the scores of ModelEvaluator and APOLLO by summing the 

product of APOLLO’s pairwise GDT-TS and ModelEvaluator score normalized by the 

sum of all ModelEvaluator scores. 

Besides the four multi-model QA methods and some publicly available single-

model QA methods (see their description in Table I), we developed a new in-house single-

model QA method, MULTICOM-NOVEL, which uses features extracted from the 

structure and sequence to predict model quality. To assess the global quality we used 

following features, (1) amino acids encoded by a 20-digit vector of 0 and 1, (2) difference 

between secondary structure and solvent accessibility of the model (parsed using DSSP) 

and the prediction by Spine X (and also SSpro4) from the protein sequence, (3) physical-

chemical features (pairwise Euclidean distance score, surface polar score, weighted 

exposed score, total surface area score), (4) normalized quality score generated by 

ModelEvaluator[108], RWplus score[12], dope score[14], and RF_CB_SRS_OD 

score[11] . Performing statistical analysis for all global features on PISCES[167] database, 

we obtain feature density maps, i.e. the distribution of the difference between the feature 

and GDT-TS score. For a model whose true quality is unknown, MULTICOM-NOVEL 

calculates the score for each feature, and combines these scores with the feature density 

maps to predict the model’s GDT-TS score. For local quality assessment, however, 

MULTICOM-NOVEL uses support vector machine with environment scores in different 
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Euclidean distance ranges (8, 10, 12, 14, 16, 18, 20, and 30 angstrom) for each amino acid 

as input features. These environment scores extracted from a 15-residue sliding window 

that include secondary structure, solvent accessibility, and amino acid types, capture 

environmental information within a spatial sphere of a residue. 

8.3.3 Evaluation 

Together with 142 human and server predictors, our MULTICOM method was 

blindly tested on 42 human targets during CASP11 experiment. For the 39 TBM human 

domains of these 42 human targets, we downloaded native structures from CASP’s website 

(http://www.predictioncenter.org/casp11/index.cgi) for evaluation of the predicted 

structural models. We also downloaded the top 5 predictions by other server predictors to 

compare our results. All our evaluations use 6 different evaluation metrics GDT-HA[168, 

169], SphereGrinder (SG)[170], RMSD, Local Distance Difference Test (LDDT)[171], 

GDC-all[169], Molprobity score[169]. GDT-HA is a high accuracy version of global 

distance test (GDT) measure, which has half the size of distance cut off comparing with 

GDT measure. SG (SphereGrinder) score is an all-atom local structure fitness score, which 

was designed to complement and add value to GDT measure. Root-mean-square deviation 

(RMSD) is a measure for the superimposed proteins, which evaluates the average backbone 

atoms’ distance. It is not ideal for comparing cases when the structures are substantially 

different[168]. The Local Distance Difference Test (lDDT) is a superposition-free score 

that evaluates local distance differences of all atoms in a model. GDC-all score is global 

measures similar to GDT-HA, but it includes the positions of side-chain carbon atoms. 

Molprobity is a knowledge based metrics, which evaluates the physical reasonableness of 

http://www.predictioncenter.org/casp11/index.cgi
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molecular models. Besides the six evaluation metrics we also use various kinds of Z-scores. 

Z-score of a model is calculated as the model's GDT-TS score minus the average GDT-TS 

score of all the models in the model pool of a target divided by the standard deviation of 

all GDT-TS scores. 

8.4 Results and discussions 

First, we systematically evaluate the performance of MULTICOM using global and 

local quality metrics to perform comparative analysis of MULTICOM against all the server 

predictors participating in CASP11 on 39 TBM human domains. 

The distributions of accuracy for individual targets are subsequently explored along 

with specific case studies highlighting the importance of clustering in conjunction with 

model selection. Finally, we investigated the consistency and robustness of our massive 

model quality assessment method compared to any individual quality assessment method. 

Table 8.2 shows the six quality scores of the first models submitted by 

MULTICOM and 25 top performing server predictors for 39 TBM human domains. 

According to the average scores of the first models, MULTICOM performs better than the 

overall best performing server predictor (Zhang-Server) in terms of GDC, LDDT and Sph-

Gr score, and slightly worse than Zhang-Server in terms of GDT-HA, Mol, and RMSD. 

Table 8.3 reports the six quality scores of the best of top five models submitted by 

MULTICOM and the server predictors. According to the average score of the best of top 

five models, MULTICOM performs better than the overall best performing server predictor 

(Zhang-Server) in terms of GDT-HA, GDC, LDDT, and Sph-Gr score, and slightly worse 

than Zhang-Server in terms of Mol and RMSD score. The results show that, in addition to 
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effectively selecting good top-one models, MULTICOM applies clustering technique to 

increase the diversity of top five models[20] improves the quality of the best of five 

selected models.   

Gr. Name Num 

GDT-

HA GDC Mol LDDT RMSD Sph-Gr 

277s Zhang-Server 39 38.18 28.06 7.19 3.01 0.50 50.96 

290 MULTICOM 39 38.14 28.38 7.06 3.20 0.51 51.15 

499s QUARK 39 37.59 27.65 7.76 2.96 0.49 48.95 

038s nns 39 34.91 26.06 8.81 2.88 0.46 48.03 

008s MULTICOM-CONSTRUCT 39 32.71 23.93 9.91 2.84 0.41 41.10 

216s myprotein-me 39 31.64 23.86 10.06 2.49 0.41 42.38 

346s HHPredA 39 29.78 21.34 10.77 4.28 0.36 36.01 

420s MULTICOM-CLUSTER 39 32.49 23.96 10.42 2.90 0.42 39.49 

279s HHPredX 39 31.86 23.16 11.69 4.27 0.38 38.90 

050s RaptorX 39 32.23 23.42 8.97 2.47 0.44 41.05 

184s BAKER-ROSETTASERVER 39 31.88 23.60 10.09 1.96 0.44 42.39 

212s FFAS-3D 39 30.46 21.67 10.02 3.27 0.38 36.69 

300s PhyreX 38 29.90 21.66 9.74 3.47 0.35 38.60 

041s MULTICOM-NOVEL 39 30.60 22.40 11.77 3.33 0.40 38.97 

251s TASSER-VMT 39 29.60 21.25 9.42 3.91 0.27 41.71 

452s FALCON_EnvFold 39 28.02 19.78 11.14 3.35 0.40 34.31 

335s FALCON_TOPO 39 27.92 19.56 11.19 3.43 0.39 34.11 

381s FALCON_MANUAL 39 28.02 19.69 10.94 3.33 0.39 34.51 

414s FALCON_MANUAL_X 39 27.86 19.61 11.26 3.37 0.39 34.18 

479s RBO_Aleph 36 25.04 17.69 10.78 1.69 0.37 33.44 

410s Pcons-net 39 27.66 19.83 14.88 2.97 0.37 32.84 

022s 3D-Jigsaw-V5_1 37 27.57 19.43 9.60 3.06 0.33 32.98 

133s IntFOLD3 39 28.60 19.88 17.02 3.35 0.39 35.68 

117s raghavagps-tsppred 39 27.59 20.32 22.89 3.58 0.37 31.97 

073s SAM-T08-server 25 18.94 13.33 6.99 1.89 0.23 21.82 

 

Table 8.2. The average scores of the first models submitted by MULTICOM (bold) and 

top 25 performing server predictors. 
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Gr. Name Num 

GDT-

HA GDC Mol LDDT RMSD Sph-Gr 

290 MULTICOM 39 41.00 31.10 6.85 2.99 0.53 54.48 

277s Zhang-Server 39 40.02 29.89 6.76 2.93 0.50 52.47 

499s QUARK 39 39.69 29.38 6.92 2.99 0.49 52.88 

184s BAKER-ROSETTASERVER 39 37.69 28.56 8.38 1.93 0.49 50.44 

038s nns 39 37.56 28.07 8.00 2.91 0.49 50.29 

420s MULTICOM-CLUSTER 39 34.98 26.10 10.08 2.91 0.44 43.26 

216s myprotein-me 39 34.05 25.89 10.26 2.45 0.42 44.00 

041s MULTICOM-NOVEL 39 34.76 25.93 9.96 3.24 0.43 43.34 

008s MULTICOM-CONSTRUCT 39 34.38 25.84 10.67 2.90 0.42 41.33 

251s TASSER-VMT 39 32.67 24.07 8.87 3.89 0.29 44.01 

050s RaptorX 39 32.74 23.59 8.78 2.42 0.44 41.55 

346s HHPredA 39 29.78 21.34 10.77 4.28 0.36 36.01 

212s FFAS-3D 39 32.09 22.93 9.87 3.30 0.39 39.70 

279s HHPredX 39 31.86 23.16 11.69 4.27 0.38 38.90 

300s PhyreX 39 31.17 22.55 10.09 3.53 0.37 39.43 

454s eThread 39 29.68 20.48 10.98 3.65 0.37 37.58 

479s RBO_Aleph 36 27.41 19.89 10.31 1.65 0.38 34.95 

452s FALCON_EnvFold 39 29.97 21.19 10.65 3.37 0.40 35.48 

335s FALCON_TOPO 39 29.85 20.63 10.72 3.42 0.40 35.54 

381s FALCON_MANUAL 39 29.83 21.04 10.69 3.35 0.40 35.72 

073s SAM-T08-server 27 21.18 15.17 7.27 2.00 0.24 25.43 

414s FALCON_MANUAL_X 39 29.80 21.14 10.50 3.35 0.41 35.61 

237s chuo-fams-server 39 30.11 21.96 14.46 3.96 0.36 32.79 

410s Pcons-net 39 29.46 21.00 14.53 2.91 0.38 34.66 

466s RaptorX-FM 14 8.47 5.17 3.71 1.25 0.07 9.11 

 

Table 8.3. The average scores of the best of top five models submitted by MULTICOM 

(bold) and top 25 performing server predictors. 

 

To evaluate the overall performance of MULTICOM in CASP11 TBM human 

targets relative to other server predictors and to explore any possible relationship between 

target difficulty and accuracy, we first investigated the median accuracy of first models 

submitted by MULTICOM and other server predictors against the number of residues in 

domain. Figure 8.2 shows the evaluation as judged by six different quality metrics. The 

lack of correlation between target length and accuracy might indicate the presence reliable 
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template(s) irrespective of sequence length and the predictors’ ability to select them 

accordingly. 

To gain additional insight in target difficulty, we examined the percentage of 

sequence identity between the target and best template present in Protein Data Bank after 

optimal structural superposition (as provided by CASP11 assessors at 

http://www.predictioncenter.org/download_area/CASP11/templates/). In Figure 8.3, we 

report the accuracy of first models submitted by MULTICOM and the median performance 

of server predictors against the percentage of sequence identity for each of the six quality 

metrics. Once again, no systematic pattern can be observed from between the target 

difficulty and performance. 
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Figure 8.2.  Performance of MULTICOM and server predictors with respect to number of 

residues in domain 
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Figure 8.3.  Performance of MULTICOM and server predictors with respect to difficulty 

of target 
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Figure 8.4.  Accuracy of MULTICOM compared to other server predictors 

 

In Figure 8.4, we examined the accuracy of the first models and the best of top five 

models submitted by MULTICOM and compared it with that of the server predictors. The 
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comparison between the first models submitted by MULTICOM and the best server models 

(middle panels of Figure 8.4) indicates the ability of MULTICOM to often select good 

models from model pool. Furthermore, when the best of top five models submitted by 

MULTICOM are considered, MULTICOM’s performance of selecting some good models 

is even better (rightmost panels of Figure 8.4). This suggests that the massive integration 

of diverse protein quality assessment methods used in MULTICOM facilitates in selecting 

good models from the hundreds of alternative models generated by server predictors. 

MULTICOM’s performance in MolProbity was significantly worse than other quality 

metrics (Figure 8.4e), highlighting somewhat lack of physical reasonableness and 

enhanced stereochemistry in the submitted models. The problem may be caused by the 

poor quality of side chains and backbone atoms in the models, which could be corrected 

by using SCWRL[109] to repack the side chains, and using a physically-realistic all-atom 

MD/Monte Carlo simulation to refine the model.  

To study the distribution and degree of accuracy on a per target basis and to 

understand the diversity of MULTICOM’s five submitted models, we calculated Z-score 

for each of the six quality metrics considering all predictors and analyzed the quartile plots 

of Z-scores by highlighting the five models submitted by MULTICOM. For several targets, 

MULTICOM’s performance was comparable with the best prediction submitted by any 

predictor. Moreover, the diversity between the five models submitted by MULTICOM 

indicates the effectiveness of using clustering together with model selection. Two 

representative examples are shown in Figure 8.5 for CASP11 targets T0853-D1 and 

T0830-D1. For target T0853-D1, the first submitted model (highlighted in red) proved to 
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be the best as judged by GDT-HA while the five submitted models were quite diverse 

covering different aspects of model quality. A close resemblance can be observed between 

the experimental structure and prediction (Figure 8.5a). On the other hand, the fifth 

submitted model turned out to be the best in terms of GDT-HA for target T0830-D1 while 

having lesser diversity between five submitted models. In both the cases, the best out of 

five models by MULTICOM achieved accuracy close to the best-submitted model by any 

predictor. 

In addition to assessing the overall performance, we specifically examined how 

massively integration of diverse protein quality assessment methods helps in improving the 

ranking of template-based models compared to any individual QA method and explored 

how average accuracy of the pool of model impacted model selection. Figure 8.6 presents 

the GDT-HA of the top model selected by each of the single QA and MULTICOM with 

respect to the median GDT-HA score of the ensemble of server predictors. The overall 

accuracy of MULTICOM is observed to be better than individual QA methods. Several 

additional interesting insights can be observed. For example, when the median GDT-HA 

scores are very high, several clustering-based methods display relatively poor performance 

compared to single model QA methods. One explanation for this could be that the presence 

of an easily identifiable template and relatively straightforward target-template alignment, 

causing almost all the server methods to perform similarly. This results in less diversity in 

the model ensemble and subsequently affects the performance of clustering-based QA 

techniques that favor average-quality models (i.e. the center of a model cluster).  
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Figure 8.5.  Case study for CASP11 targets T0853-D1 and T0830-D1. 

 

 

Figure 8.6.  Comparison of MULTICOM with individual QA methods. 
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Table 8.4 shows the comparison for the top 1 model selected by MULTICOM and 

each QA method based on GDT-HA score. As we can see from the table, in terms of 

average GDT-HA, and also Z-score on all targets, MULTICOM gets the best performance. 

In addition, we do a Wilcoxon signed ranked sum test on the top 1 model’s Z-score 

difference between MULTICOM and each QA method, and the p-value is shown in the 

table. The QA method QApro, ModelEva, and Proq2 actually perform very well on these 

TBM targets, and the difference between MULTICOM and them is not very significant 

given the confidence level 0.05. However, MULTICOM is significantly different with 

other QA methods based on the selected top 1 model’s Z score, suggesting Z-score is a 

more sensitive measure of the difference in model quality.  

 

QA score name  

on all human targets 

Ave. GDT-HA  

score on all 

Ave. Z score  

on all 

p-value of  

Z score diff. 

 

MULTICOM 36.3 1.417 -  

SELECTpro 33.0 0.889 0.0159  

Proq2 31.8 1.158 0.0558  

Modelcheck2 31.8 0.959 0.0208  

MULTICOM-NOVEL 31.4 0.936 0.0059  

Pcons 31.1 0.681 0.0125  

ModelEva 31.1 1.086 0.0829  

APOLLO 30.9 0.830 0.0463  

Modfoldclust2 30.9 0.888 0.0425  

QApro 30.9 1.117 0.1950  

Dope 30.8 0.835 0.0061  

Dfire2 30.4 0.997 0.0224  

OPUS-PSP 29.9 0.635 0.0016  

RWplus 29.8 0.932 0.0161  

RF_CB_SRS 27.6 0.489 0.0017  

 

Table 8.4. Comparison for the top 1 model selected by MULTICOM and each QA method 

based on GDT-HA score 
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Figure 8.7.  Landscape of MULTICOM’s ranking. 

 

To investigate MULTICOM’s ability to rank the models, we studied the GDT-HA 

score of a model with respect to its ranking by MULTICOM on a per target basis. In Figure 

8.7, we present two typical example of MULTICOM’s ranking. For target T0822-D1, 

shown in Figure 8.7a, the majority of the models has GDT-HA score less than 0.15 GDT-

HA score and was ranked low by MULTICOM, while few models have GDT-HA score 

more than 0.25 and were usually ranked higher. MULTICOM was able to select the better 

model compared to other QA methods, although it missed the best model myprotein-

me_TS4 in the server model pool. In case of target T0838-D1, reported in Figure 8.7b, 

clear convergence to the optimal model can be observed as shown by distinct inverted 

funnel shaped ranking landscape. Even though in this case MULTICOM was neither able 

to pick the best model myprotein-me_TS1 in the server model pool, nor performed better 

than all the other QA methods. However, the performance of MULTICOM and the optimal 

QA methods (OPUS-PSP or DOPE) were comparable. 
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8.5 Conclusions 

We conducted a comprehensive analysis of our CASP11 human tertiary structure 

predictor MULTICOM on template-based targets. Our experiment demonstrates that the 

massive integration of diverse, complementary quality assessment methods is a promising 

approach to address the significant challenge of ranking protein models and improves the 

accuracy and reliability of template-based modeling. In order to further improve the 

template-based modeling, on one hand more accurate tertiary structure prediction methods 

need to be developed to generate a large portion of good structural models, and on the other 

hand more sensitive model quality assessment methods need to be included to reliably 

select good models from a pool of models that may only contain a few good models. 
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