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Announcement

• Go over quiz 3 and home works, check Sakai! 

• Literature report comments.

•  Second round posted on Sakai. (You need to have the data 
ready for approval of your final project). 



Neural Network



Reference book:

Neural networks and deep learning, Michael Nielsen, Jan 2017.

http://michaelnielsen.org/




https://en.wikipedia.org/wiki/Visual_cortex

140 millions neurons





• We'll write a computer program implementing a neural network that 
learns to recognize handwritten digits

• We're focusing on handwriting recognition because it's an excellent 
prototype problem for learning about neural networks in general.

• The MNIST database (Mixed National Institute of Standards and 
Technology database) is a large database of handwritten digits that is 
commonly used for training various image processing systems



Overview of Neural Network Architecture

• Feed-forward Neural Network 
• Recurrent Neural Network



Feed-forward Neural Network

This is the commonest type of neural 
network in practical application 
• The first layer is the input and last 

layer is the output 
• If there is more than one hidden layer, 

we call them “deep” neural network

Input units

Hidden units

They compute a series of 
transformations that change the 
similarities between cases. 
• The activities of the neurons in each 

layer are a non-linear function of the 
activities in the previous layer



Recurrent Neural Network

This has directed cycles in their 
connection graph 
• That means you can sometimes get 

back to where you started by following 
the arrow.

They can have complicated dynamics 
and this can make them very difficult to 
train 
• There is a lot of interest at present in 

finding efficient ways of training 
recurrent nets.

They are more biologically realistic



Recurrent Neural Network

Recurrent neural networks are a very 
natural way to model sequential data 
• They are equivalent to very deep nets 

with one hidden layer per time slice. 
• Except that they use the same weights 

at every time slice and they get input at 
every time slice

They have the ability to remember 
information in their hidden state for a 
long time 
• But it’s very hard to train them use this 

potential.



Example of Recurrent Neural Network

Andrej Karpathy released code for Multi-layer Recurrent Neural 
Networks (LSTM, GRU, RNN) for character-level language models 
in Torch 
• Here is the link on Github: https://github.com/karpathy/char-rnn

After training for several hours on a subset of works of Shakespeare, 
we could use the trained model to sample new text (start with “The 
meaning of life is “): 
• th sample.lua cv/lm_lstm_epoch14.18_1.4002.t7 -gpuid -1 -

primetext "the meaning of life is"  -temperature 0.6 -length 100 
• Demo by Dr. Cao on /home/caora/GitHub/char-rnn

https://github.com/karpathy/char-rnn


Perceptrons were developed in the 
1950s and 1960s by the scientist Frank 
Rosenblatt, inspired by earlier work by 
Warren McCulloch and Walter Pitts.

The first generation of neural network

Feature units

Learned weight

w1

w2

w3

decision units

• 1. Convert raw input vector into a 
feature vector  

• 2. Learn how to weigh each of the 
feature activations o get a single scalar 
quantity 

• 3. If this quantity is above some 
threshold, decide that the input vector is 
a positive example of the target class

http://books.google.ca/books/about/Principles_of_neurodynamics.html?id=7FhRAAAAMAAJ
http://en.wikipedia.org/wiki/Frank_Rosenblatt
http://scholar.google.ca/scholar?cluster=4035975255085082870
http://en.wikipedia.org/wiki/Warren_McCulloch
http://en.wikipedia.org/wiki/Walter_Pitts


1. They appeared to have a very powerful learning algorithm in 1960’s.

2. Lots of grand claims were made for that they could learn to do.

3. In 1969, Minsky and Papert published a book called “Perceptrons” that 
analyzed what they could do and showed their limitations 
• Many people thought these limitations applied to all neural network 

models.

Feature units

Learned weight

w1

w2

w3

decision units



Feature units

Learned weight

w1

w2

w3

decision units



Suppose the weekend is coming up, and you've heard that there's 
going to be a cheese festival in your city. You like cheese, and are 
trying to decide whether or not to go to the festival. You might 
make your decision by weighing up three factors:

1. Is the weather good? 
2. Does your partner want to accompany you? 
3. Is the festival near public transit? (You don’t own a car).

• Can you use decision tree?



Feature units

Learned weight

w1

w2

w3

decision units





What (0,0) will produce? 

1, since 0*(-2) + 0*(-2) + 3 = 3 > 0

What (1,1) will produce? 

0, since 1*(-2) + 1*(-2) + 3 = -1 < 0

NAND gate



use NAND gates to build a circuit which adds two bits x1 and x2





The computational universality of perceptrons is simultaneously 
reassuring and disappointing. It's reassuring because it tells us that 
networks of perceptrons can be as powerful as any other computing 
device. But it's also disappointing, because it makes it seem as though 
perceptrons are merely a new type of NAND gate. That's hardly big news!



The limitations of Perceptrons

You have two single bit features, can you use perceptrons to tell if 
they are the same? 
• Positive cases (same):        (1,1) -> 1;   (0,0) ->1 
• Negative cases (same):       (1,0) -> 0;   (0,1) ->0

1 * w1 + 1 * w2  + b > 0,     0 * w1 + 0 * w2 + b > 0 
1 * w1 + 0 * w2  + b <=0,    0 * w1 + 1 * w2  + b <=0

We could use b = -threshold, and rewrite the formula



The limitations of Perceptrons

Imagine “data-space” in which the axes correspond to components of 
an input vector. 
• Each input vector is a point in this space 
• A weight vector defines a plane in data-space 
• The weight plan is perpendicular to the weight vector and misses 

the origin by a distance equal to the threshold



The limitations of Perceptrons

Networks without hidden units are very limited in the input-output 
mappings they can learn to model 
• More layers of linear units do not help. Its still linear

We need multiple layers of adaptive, non-linear hidden units. But 
how can we train such nets? 
• We need an efficient way of adapting all the weights, not just the 

last layer. This is hard. 
• Learning the weights going into hidden units is equivalent to 

learning features. 
• This is difficult because nobody is telling us directly what the 

hidden units should do.







Sigmoid neurons
We want networks as follows, when small change in any weight 
causes small change in output. 
• But this isn't what happens when our network contains perceptrons. 

Small change in the weights or bias of perceptron in the network 
can sometimes cause the output of that perceptron to completely 
flip, say from 0 to 1



We can overcome this problem by introducing a new type of artificial 
neuron called a sigmoid neuron.

Sigmoid neurons

just like a perceptron, the sigmoid neuron has weights for each input, 
and bias. But the output is not 0 or 1.

Sigmoid function



Sigmoid function







partial derivatives of the output with respect to weight and bias.



The architecture of neural networks



multiple layer networks are sometimes called multilayer perceptrons or MLPs 
But the neurons are sigmoid neurons
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64 * 64 = 4096



A simple network to classify handwritten 
digits



• Each contains 28 * 28 pixel images of scanned handwritten digits

    28 * 28 = 784

• The input pixels are greyscale, with a value of 0.0 representing white, a 
value of 1.0 representing black.





Learning with gradient descent

We have designed the network, what is the next?

training data set MNIST data set

The MNIST data comes in two parts.  
• The first part contains 60,000 images to be used as training data 
• The second part of the MNIST data set is 10,000 images to be used 

as test data.



x as 28×28=784 dimensional vector.

Learning with gradient descent



Cost function to quantify how well we achieve our goal:

We'll call C the quadratic cost function; it's also sometimes known as 
the mean squared error or just MSE.

We would like to minimize the cost function, and to minimize C, we 
use algorithm known as gradient descent

Learning with gradient descent



Now we can forget about neural network, and focus on minimizing some 
function C(v)! And v could be any real-valued function of many variable: 
v = v1, v2, v3 … 

Learning with gradient descent

We could imagine C as function of just two variables: v1 and v2. 





How to find the minimum?

Learning with gradient descent

• We could eyeball the graph and find the minimum.

• We could compute derivatives and then try using them to find 
places where C is an extremum

• Fortunately there is a way to do it.  
Imagine a ball rolling down the slope of the valley!



Learning with gradient descent

The calculus tells us:

We are going to find some Δv1 and Δv2 , 
so that ΔC is negative! 

We denote the gradient vector by ∇C as:



η is learning rate, a small 
positive number

Learning with gradient descent

By doing this, we can assure that ΔC  is negative! Why?

ΔC  now is -η * ∇C * ∇C, and it will be negative! 



Learning with gradient descent

v→v′=v−η∇C



Learning with gradient descent

It also works when there are more than two variables.

Δv=(Δv1,…,Δvm)T

ΔC≈∇C⋅Δv, where the gradient ∇C is the vector:



How can we apply gradient descent to learn in a neural network?

The idea is to use gradient descent to find the weights w and biases b, 
which minimize the cost

Learning with gradient descent



Learning with gradient descent



Stochastic gradient descent 

Learning with gradient descent

• The idea is to estimate the gradient ∇C by computing ∇Cx for a small 
sample of randomly chosen training inputs

• Mini-batch: randomly picking m training inputs: X1,X2,…,Xm



Stochastic gradient descent 

Learning with gradient descent

• Suppose wk and bl denote the weights and biases in our neural network. 
For a random m mini-batch:

• For MNIST database, if we have target training set of size n = 60,000, 
and if mini-batch size m = 10, we will get a factor of 6,000 speedup in 
estimating the gradient!

• We finish this m training data, and pick up another m training data, 
until we’ve exhausted the training inputs, which is said to complete an 
epoch of training!



Let’s simply learn a short python program with less than 100 lines.  
• You can download the code on simon server by: 
    git clone https://github.com/mnielsen/neural-networks-and-deep-learning.git 

Demo of short python program

The MINIST dataset: 
• In this example, we use 50,000 image data set for training, and 10,000 for 

validation. 
• Python library Numpy is used for fast linear algebra. 



Demo of short python program

So 
• net = Network([2,3,1]) will create a network with 2 neurons in the first layer, 3 

neurons in the second layer and 1 neuron in the last layer. 
• net.weight[1] is Numpy matrix storing weight connecting second and third layer. 



Demo of short python program

Calculating the output: 
• First we need to define the sigmoid function 
• Calculating the output is straight forward, we only need to calculate formula: 

Sigmoid 



Demo of short python program



How is the learning process?  
• The stochastic gradient decent (SGD)

• Training_data is tuples, input 
and output

• epochs and mini_batch_size is 
used for SGD

• eta is learning rate

• If test_data is supplied, we are 
going to evaluate the 
performance after each epoch

• This function applies a single 
step of gradient decent for each 
mini_batch.



Gradient decent on mini_batch

• most job is done by backprop



We currently skip back_prop function, and will go back to it after we 
learn the back propagation algorithm!

Demo of short python program

Except for that, the whole program is now understandable.  
Let’s try it!

>>>import mnist_loader
>>>training_data, validation_data, test_data = \
... mnist_loader.load_data_wrapper()

>>> import network
>>> net = network.Network([784, 30, 10])

>>> net.SGD(training_data, 30, 10, 3.0, test_data=test_data)



Demo of short python program

the trained network gives us a classification rate of about 95 percent - 95.42 
percent at its peak ("Epoch 28")!



Demo of short python program

Can you try to change the number of hidden neurons to 100 and rerun the 
program?

>>> net = network.Network([784, 100, 10])
>>> net.SGD(training_data, 30, 10, 3.0, test_data=test_data)

Can you try to change the learning rate to 0.001 and rerun the program?

>>> net = network.Network([784, 100, 10])
>>> net.SGD(training_data, 30, 10, 0.001, test_data=test_data)

Questions to think: 
• What’s your performance now?  
• Do you think we should increase the learning rate?  
• What is the best learning rate?  
• What if you set learning rate to 100?



In-class exercise 

• Read and understand the code in src folder: mnist_loader.py 
• Try different learning rate, number of nodes and hidden layers 
• Think about simply consider how dark to do the job, like 2 is darker 

than 1: 

• If you are interested, try the code at: https://github.com/mnielsen/
neural-networks-and-deep-learning/blob/master/src/
mnist_average_darkness.py 

https://github.com/mnielsen/neural-networks-and-deep-learning/blob/master/src/mnist_average_darkness.py


Homework

1. Create account on Gitlab, and each group should have one project 
named (CS330_fall2018_groupX) for your final project and share to 
me. 
• Here is the link: https://gitlab.com/ 
• Add me in your project: caora@plu.edu

2. Login Google and Intel platform or use simon server for your 
experiment. 

mailto:caora@plu.edu


Homework

4. Download Leo Tolstoy’s War and Peace at the following link, and 
use Torch to train a RNN model, then do sampling to generate new 
text. 
• Here is the link: http://cs.stanford.edu/people/karpathy/char-rnn/ 
• Train and sampling details: https://github.com/karpathy/char-rnn 
• Check Demo on: http://simon.cs.plu.edu/MLFun//index.php

3. Install Torch and try to use NN on it. 
• Here is the link: http://torch.ch

5. The homework is due on Nov. 13 (Tuesday). Submit your output or 
code used.

http://cs.stanford.edu/people/karpathy/char-rnn/
https://github.com/karpathy/char-rnn
http://simon.cs.plu.edu/MLFun//index.php
http://torch.ch





