
DATA 133 - Introduction to Data
Science I

Instructor: Renzhi Cao
Computer Science Department

Pacific Lutheran University

1

Announcements

• Go over Quiz 4

• Continue to work on project 1

Reference book

Pictures from: https://www.google.com/search?
q=cow&biw=1920&bih=911&source=lnms&tbm=isch&sa=X&ved=0ahUKEwiOt5zlierOAhUE02MKHVbwDY8Q_AUIBigB#imgrc=0dSVh7Vlup1KqM%3A

• R Programming for Data Science. By Roger Peng.
ISBN-10: 1365056821, April 20, 2016.

Learning in today

• R basics - Debugging

Something is wrong

R has a number of ways to indicate to you that something’s not right.

• message: A generic notification/diagnostic message produced by the message()
function; execution of the function continues

• warning: An indication that something is wrong but not necessarily fatal; execution of
the function continues. Warnings are generated by the warning() function

• error: An indication that a fatal problem has occurred and execution of the function
stops. Errors are produced by the stop() function.

• condition: A generic concept for indicating that something unexpected has occurred;
programmers can create their own custom conditions if they want.

Something is wrong

Example:

• log(-1)

Something is wrong

Example:

 printmessage <- function (x) {
+ if (x > 0)
+ print("x is greater than zero")
+ else
+ print("x is less than or equal to zero")
+ invisible(x)
+ }

> printmessage(1)
[1] "x is greater than zero”
Seems no errors, warnings, or messages

How about:
 printmessage(NA)

Something is wrong

Fixed Example:

> printmessage2 <- function (x) {
+ if (is.na(x))
+ print("x is a missing value!")
+ else if (x > 0)
+ print("x is greater than zero")
+ else
+ print("x is less than or equal to zero")
+ invisible(x)
+ }

> printmessage2(NA)
[1] "x is a missing value!"

Something is wrong

Think about the following:

> x <- log(c(-1 , 2))
Warning in log(c(-1 , 2)): NaNs produced

> printmessage2(x)
Warning in if (is.na(x)) print("x is a missing value!") else if (x > 0)
print("x is greater than zero") else print("x is less than or equal to
zero"): the condition has length > 1 and only the first element will be
used
[1] "x is a missing value!"

The printmessage2() is not vectorized

Something is wrong

One solution:

> printmessage3 <- function (x) {
+ if (length(x) > 1L)
+ stop("'x' has length > 1")
+ if (is.na(x))
+ print("x is a missing value!")
+ else if (x > 0)
+ print("x is greater than zero")
+ else
+ print("x is less than or equal to zero")
+ invisible(x)
+ }

> printmessage3(1:2)
Error in printmessage3(1:2): 'x' has length > 1

Something is wrong

Another solution:

> printmessage4 <- Vectorize(printmessage2)
> out <- printmessage4(c(-1, 2))
[1] "x is less than or equal to zero"
[1] "x is greater than zero"

Figuring out what is wrong

Some basic questions you need to ask are
• What was your input? How did you call the function?
• What were you expecting? Output, messages, other results?
• What did you get?
• How does what you get differ from what you were expecting?
• Were your expectations correct in the first place?
• Can you reproduce the problem (exactly)?

Debugging tools in R

• traceback(): prints out the function call stack after an error occurs; does nothing if there’s
no error
• debug(): flags a function for “debug” mode which allows you to step through execution of a
function one line at a time
• browser(): suspends the execution of a function wherever it is called and puts the function in
debug mode
• trace(): allows you to insert debugging code into a function a specific places
• recover(): allows you to modify the error behavior so that you can browse the function call
stack

Debugging tools in R

traceback():

> mean(x)
Error in mean(x) : object 'x' not found
> traceback()
1: mean(x)

The traceback() function must be called immediately after an error occurs

Debugging tools in R

debug() initiates an interactive debugger (also known as
the “browser” in R) for a function.

> debug(lm) ## Flag the 'lm()' function for interactive debugging
> lm(y ~ x)
debugging in: lm(y ~ x)
debug: {
 ret.x <- x
 ret.y <- y
 cl <- match.call()
 ...
 if (! qr)
 z$ qr <- NULL
 z
}

Now, every time you call the lm() function it will launch the interactive debugger
Use undebug() to turn off: undebug(lm)

Debugging tools in R

There are a few special commands you can call in the browser:
• n executes the current expression and moves to the next expression
• c continues execution of the function and does not stop until either an
error or the function
exits
• Q quits the browser

Here’s an example of a browser session with the lm() function.
Browse[2]> n ## Evalute this expression and move to the next one
debug: ret.x <- x
Browse[2]> n
debug: ret.y <- y
Browse[2]> n
debug: cl <- match.call()
Browse[2]> n
debug: mf <- match.call(expand.dots = FALSE)
Browse[2]> n
debug: m <- match(c("formula", "data", "subset", "weights", "na.action",
"offset"), names(mf), 0L)

Practice of R

Debugging R code
Continue to work on Project 1
Next Tuesday is review day for mid-term exam
Read book

