
DATA 133 - Introduction to Data
Science I

Instructor: Renzhi Cao
Computer Science Department

Pacific Lutheran University

1

Announcements

• Quiz #5 on next Tuesday, review everything we covered this week

• Project 1 due date on Sakai.

Reference book

Pictures from: https://www.google.com/search?
q=cow&biw=1920&bih=911&source=lnms&tbm=isch&sa=X&ved=0ahUKEwiOt5zlierOAhUE02MKHVbwDY8Q_AUIBigB#imgrc=0dSVh7Vlup1KqM%3A

• Data Science from Scratch - First Principles with Python.
O'Reilly Media, 2015.

Introduction

• Data Science

People are still crazy about Python after twenty-five years, which I find hard to believe.
—Michael Palin

Variables

• In Python, like in other languages, we store values in
variables. Unlike other languages, in Python the variables
don’t have a “type”

• Use of single quotes ‘’ represents text. No quotes represents
numbers

• >>>message = 'Hello'
• >>>print(message)
• >>>message = ''Hello''
• >>>print(message)
• >>>message = '''Hello'''
• >>>print(message)

Variables

Rules of naming a variable:
• Don’t start with numbers
• Don’t use @ or -
• Don’t use reserved words

Practice

Can I use the following variable names?
• 1ab
• ab@a
• aAAA3
• ABDA2
• AND
• for
• For
• a_12A
• b-32D

Try them in the interactive environment and also in Jupyter!

Numbers

• Integer. 10
• Long Integer – an unbounded integer

value. 10L
• int(x) converts x to an integer
• float(x) converts x to a floating point
• The interpreter shows

a lot of digits

>>> 132224
132224
>>> 132323 ** 2
17509376329L
>>> 1.23232
1.2323200000000001
>>> print 1.23232
1.23232
>>> 1.3E7
13000000.0
>>> int(2.0)
2
>>> float(2)
2.0

Numbers

• int(10.39)

• int(100.9999)
• int(1001.00001)

• float(87)

• float(eight)

complex

• Built into Python
• Same operations are supported as integer

and float

>>> x = 3 + 2j
>>> y = -1j
>>> x + y
(3+1j)
>>> x * y
(2-3j)

Operators

• Operations in Python are based on sign precedence

Operators

Python2: Integer vs float operations
• Integer operation will result in only the “integer” part of

the operation
• 5/3 equals 1

• Float operation will result in the “float” value of the
operation
• 5/3.0 equals 1.66666667
• 5.0/3 equals 1.66666667
• 5.0/3.0 equals 1.666666667

• You can fix that by adding the words:
from __future__ import division

• At the beginning of your code

• Let’s try it together

Modules

• Certain features of Python are not loaded by default:

from __future__ import division

import re
my_regex = re.compile("[0-9]+", re.I)

import re as regex
my_regex = regex.compile("[0-9]+", regex.I)

import matplotlib.pyplot as plt

match = 10
from re import * # uh oh, re has a match function
print match # "<function re.match>”

You may not want to do it

inputs

• The raw_input(string) method returns a line of user input as
a string

• The parameter is used as a prompt
• The string can be converted by using the conversion

methods int(string), float(string), etc.

Practice

1. Test from Jupyter:
Get a score from user and assign it to variable ‘score’
Convert variable ‘score’ to float
Assign 2 to variable N
print expression: score/N
print expression: int(score) / N
print expression: int(score) / float(N)
print expression: score//N

2. Use any text editor (e.g., Rstudio) to create a python script
test.py, and copy the code you tested into the script, run it from
command.

Break

String

• Record both textual information (your name as example) and arbitrary
collections of bytes (such as image file’s contents)

• Strings are sequences of characters.

String

• Strings are immutable
• + is overloaded to do concatenation

>>> x = 'hello'
>>> x = x + ' there'
>>> x
'hello there'

String

• Can use single or double quotes, and three double quotes for a
multi-line string

>>> 'I am a string'
'I am a string'
>>> "So am I!"
'So am I!'
>>> s = """And me too!
though I am much longer
than the others :)"""
'And me too!\nthough I am much longer\nthan the others :)‘
>>> print s
And me too!
though I am much longer
than the others :)

String

>fruit = ‘banana’
>letter = fruit[1]
>len(fruit)
>fruit[-1]
>fruit[-2]

 Traverse a string
>for char in fruit:
 print char
>r= fruit[0:2]

String

>fruit = ‘banana’
>fruit[:] # all of fruit as a top-level copy (0:len(fruit))

> fruit + ‘xyz’ # Concatenation

> fruit * 8 # Repetition

> fruit[0] = ‘a’ # immutable objects cannot be changed

> new = ‘a’ + fruit[1:] # this is fine

Substring and methods

• len(String) – returns the number of characters in the
String

• str(Object) – returns a String representation of the
Object

>>> len(x)
6
>>> str(10.3)
'10.3'

String methods

smiles = "C(=N)(N)N.C(=O)(O)O"
>>> smiles.find("(O)")
15
>>> smiles.find(".")
9
>>> smiles.find(".", 10)
-1
>>> smiles.split(".")
['C(=N)(N)N', 'C(=O)(O)O']
>>>

Use “find” to find the
start of a substring.

Start looking at position 10.

Find returns -1 if it couldn’t
find a match.

Split the string into parts
with “.” as the delimiter

String methods

 Strings have methods:

>word= “banana”
>word.find(‘a’) or word.upper() or word.replace(‘a’,’b’) or word.split(‘,’)

> S = ‘aaa,bbb,ccc, dd\n’
> S.rstrip() # remove whitespace characters on the right side

>dir(S) # help

String methods

if "Br" in “Brother”:
 print "contains brother“

email_address = “clin”
if "@" not in email_address:
 email_address += "@brandeis.edu“

String formatting

• Similar to JAVA’s printf (%s for string, %d for integer).
• <formatted string> % <elements to insert>
• Can usually just use %s for everything, it will convert

the object to its String representation.

>>> "One, %d, three" % 2
'One, 2, three'
>>> "%d, two, %s" % (1,3)
'1, two, 3'
>>> "%s two %s" % (1, 'three')
'1 two three'
>>>

Practice

 Create a script that:

1. Create a string with any characters in total length of 10. (you can
manually assign it or asks the user - Raw_input method)

2. Prints the string letter by letter. Each letter in a different line

3. Prints the string in lower case

4. Prints the string in upper case

5. Prints the string backwards

6. Create string with “,” inside, and use split method to process it

7. Prints first three characters

8. Prints last four characters

DataSciencester

Cheers! Successful second day!

Practice of R

Finish all in-class exercises and turn it in Sakai
Quiz on next Tuesday.
Read book Page 15 - 19.

