
DATA 133 - Introduction to Data
Science I

Instructor: Renzhi Cao
Computer Science Department

Pacific Lutheran University

1

Announcements

• In-class exercise for day 18 will be due today. Continue to work on Project 2.

• Check hint on course website for data visualization

• Today we are going to learn Linear Algebra and statistics in Python

Reference book

Pictures from: https://www.google.com/search?
q=cow&biw=1920&bih=911&source=lnms&tbm=isch&sa=X&ved=0ahUKEwiOt5zlierOAhUE02MKHVbwDY8Q_AUIBigB#imgrc=0dSVh7Vlup1KqM%3A

• Data Science from Scratch - First Principles with Python.
O'Reilly Media, 2015.

• Reading (Data Science from Scratch):

• Read chapter 4: Linear Algebra

• Read chapter 5: Statistics

• Read chapter 6: Probability

Introduction

• Linear Algebra

Is there anything more useless or less useful than Algebra?
—Billy Connolly

Linear Algebra

• Branch of Mathematics that deals with Vector Spaces.
• Vector Space? What is a Vector?

• Formal: “a quantity having direction as well as magnitude, especially as
determining the position of one point in space relative to another.”

• Informal: Point in a finite-dimensional space. They can be added
together and multiplied by scalars (numbers)

• Example: A vector in a 3-d space: Age, Height, Weight
• A vector in a 4-d space: Exam1, Exam2, Exam3, Exam4

• What to represent vector in R? How about Python?

Linear Algebra

• List = [10, 20, 30]

def vector_add(v, w):
 """adds corresponding elements"""
 return [v_i + w_i for v_i, w_i in zip(v, w)]

def scalar_multiply(c, v):
 """c is a number, v is a vector"""
 return [c * v_i for v_i in v]

def scalar_multiply(c, v):
 """c is a number, v is a vector"""
 return [c * v_i for v_i in v]

def dot(v, w):
 """v_1 * w_1 + ... + v_n * w_n"""
 return sum(v_i * w_i for v_i, w_i in zip(v, w))

 Not very practical to use lists!
◦ Cannot perform operations as vectors!

Linear Algebra

 import numpy as np

 a = np.array([1,2,3], float)

 b = np.array([5,2,6],float) OR b = np.array([5,2,6])

 print a +b

 print a * 5

Linear Algebra

 Python does not have 2-d arrays, but we could use vectors to represent
them.

 friendship = np.array([[0,0,1],[1,0,1],[1,0,0]])

 friendship2 = np.array([[0,0,1],[1,0,1],[1,0,0]])

 Test =friendship + friendship2

Numpy details

 http://www.engr.ucsb.edu/~shell/che210d/numpy.pdf

 Also on the course website as a pdf file

http://www.engr.ucsb.edu/~shell/che210d/numpy.pdf
http://www.engr.ucsb.edu/~shell/che210d/numpy.pdf

Practice

• Explore Numpy document with your partner.
• Read the data.txt and load the first column as list 1, and the second

column as list2
• Use Numpy to calculate the mean, min, max of all data for each list.

Write function to do that.
• Use Numpy to do a vector add, subtract, and multiply of this two lists.

Break

Statistics

 This is a GIGANTIC topic.

 In this class, we will just cover the surface.

 Covering basic concepts that we will use in the future.

 “Facts are stubborn, but statistics are more pliable”

 Mark Twain

Statistics

• What do you want to know from this picture?

Measurements of central tendency and
Dispersion

 Mean

 Median

 Mode

 Min and Max
value

 Percentiles

 Range

 Variance

 Standard
Deviation

Statistics

• movies = [3,5,2,4,7]
• How to write a function to calculate the mean?

def mymean(v):
 total = 0
 for i in range(len(v)):
 total = total + v[i]
 result = total/len(v)
 return result

mymean(movies)

Simple way, use numpy, numpy.mean(movies)

Statistics

• movies = [3,5,2,4,7]
• How about median?

def median(v):
 """finds the 'middle-most' value of v"""
 n = len(v)
 sorted_v = sorted(v)
 midpoint = n // 2
 if n%2==1:
 # if odd, return the middle value return sorted_v[midpoint]
 else:
 # if even, return the average of the middle values
 lo = midpoint - 1
 hi = midpoint
 return (sorted_v[lo] + sorted_v[hi]) / 2

median(num_friends) # 6.0

Simple way, use numpy, numpy.median(movies)

Statistics

 Example:

 Statistics is a module only supported in 3.0
 In 2.7 we can use numpy to calculate those values or create our
own functions.

 a = np.array([[0,2], [3, -1], [3, 5]], float)
 a.mean(axis=0) # will get [2,2]
 a.mean(axis=1) # will get [1,1,4]
 l = [1,3,6,7,8]
 np.median(l) # get the median of l

Correlation

• A correlation of -1 means perfect anti-correlation
• A correlation of 1 means perfect positive correlation

• Indicates a relationship between the two parameters, lists, etc.
• Correlation does not imply causation!!!! Will be saying this

many many times

• In numpy, use numpy.corrcoef.

Simpson’s paradox

 Confounding variables (confounding variable is an unmeasured
third variable that influences both the supposed cause and the
supposed effect.) ?

 Number of friends for a group of scientists

Coast # of Members Avg.# of friends

West 101 8.2

East 103 6.5

Simpson’s paradox

Coast Degree # of members Avg. # of friends

West Ph.D. 35 3.1

East Ph.D. 70 3.2

West No Ph.D. 66 10.9

East No Ph.D. 33 13.4

Assumes all other values are equal
Always look at all confounding values!

Practice

Apply the things you learned in today’s class to your project 2!

Any question or demo needed for project 2?

Homework of R

1. Read book chapter 4 - 5
2. Continue to read chapter 6 if you have time
3. No homework for today. Continue to work on Project 2.

