
DATA 133 - Introduction to Data
Science I

Instructor: Renzhi Cao
Computer Science Department

Pacific Lutheran University

1

Announcements

• Read books: Page 23-41

• Quiz 2 on next Tuesday

• Go over Quiz 1 (10% off per day for late penalty). Go over it together.

• Practice quiz (not counted for final grade)

• Computer Science Welcome party

• Declare the data science minor:
https://www.plu.edu/computer-
science/documents/declare-csci-
or-data-major-or-minor/

https://www.plu.edu/computer-science/documents/declare-csci-or-data-major-or-minor/
https://www.plu.edu/computer-science/documents/declare-csci-or-data-major-or-minor/
https://www.plu.edu/computer-science/documents/declare-csci-or-data-major-or-minor/

Reference book

Pictures from: https://www.google.com/search?
q=cow&biw=1920&bih=911&source=lnms&tbm=isch&sa=X&ved=0ahUKEwiOt5zlierOAhUE02MKHVbwDY8Q_AUIBigB#imgrc=0dSVh7Vlup1KqM%3A

• R Programming for Data Science. By Roger Peng.
ISBN-10: 1365056821, April 20, 2016.

Learning in today

• R basics - Matrices, Factor, Data Frame, subsetting, etc.

Matrices

Matrices are vectors with a dimension attribute. The dimension
attribute is itself an integer vector of length 2 (number of rows, number
of columns)
> m <- matrix(nrow = 2, ncol = 3)
>m
[,1] [,2] [,3] [1,] NA NA NA [2,] NA NA NA
> dim(m)
[1] 2 3
> attributes(m)
$dim
[1] 2 3

Matrices

Matrices are constructed column-wise, so entries can be thought of
starting in the “upper left” corner and running down the columns.
> m <- matrix(1:6, nrow = 2, ncol = 3)
>m
 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

Matrices

Matrices can also be created directly from vectors by adding a
dimension attribute.

> m <- 1:10
>m
[1] 1 2 3 4 5 6 7 8 9 10
> dim(m) <- c(2, 5)
>m

>m[1,2]
> n <- seq(1,10,2)
>n

Matrices

Matrices can be created by column-binding or row-binding with the
cbind() and rbind() functions.
> x <- 1:3
> y <- 10:12
> cbind(x, y)
> rbind(x, y)

Guided practice

1.Create the following matrices and print it out:
 1 3 5
 7 9 11
 13 15 17

2. Create the following matrices and print it out:
 1 41 455 474
 2 239 121 357
 61 65 178 533

Guided practice solution

1. c1 <- seq(1,5,2)
 c2 <- seq(7,11,2)
 c3 <- seq(13,17,2)
 m <- cbind(c1,c2,c3)

2. tem <- c(1,2,61,41,239,65,455,121,178,474,357,533)
 m <- matrix(tem,nrow=3, ncol=4)

Factors

> x <- factor(c("yes", "yes", "no", "yes", "no"))
>x
>table(x)
See the underlying representation of factor
> unclass(x)

Factors are used to represent categorical data (unordered or
ordered), like integer vector where each integer has a label.

• Self-describing. “Male” and “Female” is better value
compared to 1 and 2.

• Use factor() function to create a factor.

Factors

The order of the levels of a factor can be set using the levels argument
to factor(). This can be important in linear modelling because the first
level is used as the baseline level.
> x <- factor(c("yes", "yes", "no", "yes", "no"))
> x ## Levels are put in alphabetical order
[1] yes yes no yes no
Levels: no yes
> x <- factor(c("yes", "yes", "no", "yes", "no"), levels <- c("yes", "no"))
> x
[1] yes yes no yes no
Levels: yes no

Missing values

Missing values are denoted by NA or NaN for undefined
mathematical operations. (NaN means not a number, like 0/0. NA
means missing values)
• is.na() is used to test objects if they are NA
• is.nan() is used to test for NaN
• NA values have a class also, so there are integer NA, character NA, etc.
• A NaN is also NA but the converse is not true

Missing values

> ## Create a vector with NAs in it
> x <- c(1, 2, NA, 10, 3)
> ## Return a logical vector indicating which elements are NA
> is.na(x)
> is.nan(x)
> ## Now create a vector with both NA and NaN values
> x <- c(1, 2, NaN, NA, 4)
> is.na(x)
> is.nan(x)

Practice

1. Create a vector with the values of 1, 3, NA, 5, NaN

2. Test NA

3. Test NaN

Guided Practice Solution

1. Create a vector with the values of 1, 3, NA, 5, NaN

2. Test NA

3. Test NaN

v <- c(1,3,NA,5,NaN)

is.na(v)

is.nan(v)

Data Frames

Data frames are used to store tabular data in R.
Data frames are represented as a special type of list where every element of the
list has to have the same length.

Each element of the list can be thought of as a column and the length of each
element of the list is the number of rows.
What is this looks like and what is the difference?

Unlike matrices, data frames can store different classes of objects in each
column. Matrices must have every element be the same class (e.g. all integers
or all numeric).
Data frames have a special attribute called row.names which indicate
information about each row of the data frame.

Data Frames

Data frames are usually created by reading in a dataset using the
read.table() or read.csv(). Also, be created explicitly with the
data.frame() function
Data frames can be converted to a matrix by calling data.matrix().
> x <- data.frame(foo = 1:4, bar = c(T, T, F, F))
>nrow(x)
>ncol(x)

Names

R objects can have names, which is very useful for writing
readable code and self-describing objects.

Lists can also have names, which is often very useful.
> x <- list("Los Angeles" = 1, Boston = 2, London = 3)
> x

> x <- 1:3
> names(x)

> names(x) <- c("New York", "Seattle", "Los Angeles")

Names

Matrices can have both column and row names.
> m <- matrix(1:4, nrow = 2, ncol = 2)
> dimnames(m) <- list(c("a", "b"), c("c", "d"))
>m

Column names and row names can be set separately using the
colnames() and rownames() functions.
> colnames(m) <- c("h", "f")
> rownames(m) <- c("x", "z")

Practice

1.Create a data frame “df” with the following values:

ID Score DATA133
1 89 TRUE
2 30 FALSE
3 0 FALSE
4 99 TRUE

2. Convert data frame “df” to matrix m, and print the score of ID 3.

Break

Guided Practice Solution

1. df <-
data.frame(ID=1:4,Score=c(89,30,0,99),DATA133=c(T,F,F,T))

2. print(m[3,2])

Subsetting of R objects

There are three operators that can be used to extract subsets of R objects.

• The [operator always returns an object of the same class as the
original. It can be used to select multiple elements of an object

• The [[operator is used to extract elements of a list or a data frame. It
can only be used to extract a single element and the class of the
returned object will not necessarily be a list or data frame.

• The $operator is used to extract elements of a list or data frame by
literal name. Its semantics are similar to that of [[.

Subsetting of vector

> x <- c("a", "b", "c", "c", "d", "a")
> x[1] ## Extract the first element
> x[2] ## Extract the second element

The [operator can be used to extract multiple elements of a vector by
passing the operator an integer sequence.

> x[1:4]
> x[c(1, 3, 4)]

Subsetting of vector

We can also pass a logical sequence to the [operator to extract elements of
a vector that satisfy a given condition.

> u <- x > "a"
> u
> x[u]
> x[x > “a”] # another convenient way

Subsetting of Matrix

Matrices can be subsetted in the usual way with (i,j) type indices. Here, we
create simple 2*3 matrix with the matrix function.
> x <- matrix(1:6, 2, 3)
>x

We can access the $(1, 2)$ or the $(2, 1)$ element of this matrix using the
appropriate indices.
> x[1, 2]
> x[2, 1]

> x[1,] ## Extract the first row
> x[, 2] ## Extract the second column

Subsetting of Matrix

Dropping matrix dimensions
By default, when a single element of a matrix is retrieved, it is returned
as a vector of length 1 rather than a 1*1 matrix. Often, this is exactly
what we want, but this behavior can be turned off by setting drop =
FALSE.
> x <- matrix(1:6, 2, 3)
> x[1, 2]
> x[1, 2, drop = FALSE]
> x[1,]
> x[1, , drop = FALSE]

Subsetting of List

Lists in R can be subsetted using all three of the operators mentioned
above, and all three are used for different purposes.
> x <- list(foo = 1:4, bar = 0.6)
>x

The [[operator can be used to extract single elements from a list.
Here we extract the first element of the list.
> x[[1]]

Subsetting of List

The [[operator can also use named indices so that you don’t have to
remember the exact ordering of every element of the list. You can
also use the $ operator to extract elements by name.
> x[["bar"]]
> x$bar

Subsetting of List

One thing that differentiates the [[operator from the $ is that the
[[operator can be used with computed indices. The $ operator can
only be used with literal names.

> x <- list(foo = 1:4, bar = 0.6, baz = “hello")
> name <- "foo"
>
> ## computed index for "foo"
> x[[name]]

>## the element “name” doesn’t exists
> x$name

> ## element "foo" does exist
> x$foo

Subsetting Nested Elements of a List

The [[operator can take an integer sequence if you want to extract a
nested element of a list.

> x <- list(a = list(10, 12, 14), b = c(3.14, 2.81))
>
> ## Get the 3rd element of the 1st element
> x[[c(1, 3)]]
> ## Same as above
> x[[1]][[3]]

> ## 1st element of the 2nd element
> x[[c(2, 1)]]

Partial matching

Partial matching of names is allowed with [[and $. This is often very
useful during interactive work if the object you’re working with has
very long element names.

> x <- list(aardvark = 1:5)
> x$a

> x[[“a"]]

> x[["a", exact = FALSE]]

Removing NA values

A common task in data analysis is removing missing values (NAs).

> x <- c(1, 2, NA, 4, NA, 5)
> bad <- is.na(x)
> print(bad)

> x[!bad]

Removing NA values

What if there are multiple R objects and you want to take the subset
with no missing values in any of those objects?

> x <- c(1, 2, NA, 4, NA, 5)
> y <- c("a", "b", NA, "d", NA, "f")

> good <- complete.cases(x, y)

> good
> x[good]

> y[good]

Removing NA values

You can use complete.cases on data frames too.

> head(airquality)

> good <- complete.cases(airquality)

> head(airquality[good,])

Vectorized operations

Many operations in R are vectorized, meaning that operations occur
in parallel in certain R objects. This allows you to write code that is
efficient, concise, and easier to read than in non-vectorized
languages.

> x <- 1:4
> y <- 6:9
> z <- x + y
>z
> x >= 2
>x-y
>x*y

Vectorized operations

Matrix operations are also vectorized, making for nicely compact
notation.

> x <- matrix(1:4, 2, 2)
> y <- matrix(rep(10, 4), 2, 2)
> ## element-wise multiplication
>x*y
> ## element-wise division
>x/y
> ## true matrix multiplication
> x %*% y

Practice of R

Try it in Pairs, recommend https://replit.com/
Today’s Pair-programming is due by next Tuesday
Quiz 2 on next Tuesday
Read book 12 - 41

https://replit.com/

